京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让未来的城市环境有了可以及时查看的“晴雨表”
近几十年来,随着全球经济的不断加速,环境污染事件越来越频繁,人类赖以生存的环境引起社会高度关注,人类环保意识逐渐被唤醒,人与环境和谐发展成为共识。
2008年以来,世界各个国家和组织纷纷采取措施推动绿色经济发展,提出了一系列的绿色经济发展战略,将发展绿色经济作为提升国家经济竞争力并使之成为占领全球制高点和领先地位的重要途径。
当下,整合环境、经济、行业等数据资源,利用大数据技术的强势发展将对环境管理理念以及管理方式产生巨大的影响。近两年,依托国家发布的一系列环境污染防治政策,部分城市生态环境监管系统陆续落成,可以对监管、溯源、趋势分析以及污染源、环境质量和风险源等做到全面感知。也就是说,未来的城市环境有了可以及时查看的“晴雨表”。
政策,是促发展的前提和保证
从环保政策“元年”2015年开始,我国环保法律法规接连出台,为环保产业提供了坚实的靠山。
2016年12月,《“十三五”生态环境保护规划》发布,该《规划》是“十三五”时期我国生态环境保护的纲领性文件。明确环境治理与生态保护修复协同联动,对生态保护与修复提出重点任务和重点工程,强调要以环境质量为核心进行综合治理、协同推进,大幅度削减污染物存量,全面提升风险防控基础能力。
2017年,环保部部署安排了环境领域九大举措。分别从坚决治理大气、水和土壤污染、深化和落实生态环保领域改革、加强环境法治建设、积极主动应对环境风险、加大生态保护力度、加强核与辐射安全监管、创新决策和管理方式,实施生态环境大数据建设工程以及促进科技创新和支撑,加强基础研究和前沿技术研发等领域做出安排。
信息公开,才能为科学治理铺平道路
大数据应用在加强环境管理和公共服务,分析污染物排放状况,分析环境质量的现状及其变化趋势,准确预测、预报、预警环境质量,准确预测、预警各类环境污染事故的发生、发展,提高环境形势分析能力等方面发挥重要作用,成为促进环境管理和科学决策的新动力。
但是,环保大数据的应用和发展离不开全社会的参与,环保大数据应用需要走政府、科研单位、企业等多方合作的道路。而环境信息公开及共享成为目前环境保护工作中急需改善的一项重要工作。我国地方在政府环境管理信息、环境质量信息、污染源信息、投资项目环评信息等方面,还需制定合理方案,打通信息孤岛,进一步推动环保数据的公开化、透明化。
贵阳乌当区建首个生态环境大数据试点
发展大数据产业,贵阳一直走在全国前列。2016年,用大数据技术助力生态文明建设,成为贵阳市积极探索的一项工作。作为全国首批生态环境大数据建设试点,乌当区试点采用“网格化布点+多元数据融合+时空数据分析”模式,对全区域内大气环境、水环境、声环境等基础环境质量信息进行全面、连续、有效记录,在实现各类生态数据大融合的前提下,构建生态大数据共享服务平台。
网格化监测的实现,让每一个监测点都可实时上传监测数据,发现异常数据可迅速定位,然后结合大数据分析功能,利用数据库里关于乌当区所有餐厅、工厂、建筑工地、道路交通等方面的数据信息,追溯污染源头。
除此之外,乌当区网格化生态环境大数据中心还监测老百姓身边的环境状况。全面及时分析出污染来源,追溯污染物扩散趋势,对污染源起到最大程度监管作用,为环境执法和决策提供直接依据。
贵阳市生态文明委相关负责人认为,生态环保大数据更大的作用,是为普通群众带来切实的健康和便利。比如,生态环境大数据中心通过点多面广的实时监测数据,结合世界卫生组织、疾控中心等权威机构关于环境和健康的相关数据模型,推出“环境健康指数”,用来量化定义环境与人体健康或人体感受的一个指数,为公众服务。
可以预见,未来环保大数据的合理开发及应用,将彻底改善纠缠人类已久的“环境治理”世纪难题,让绿色生态和可持续发展两个方面得以“齐头并进”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10