
大数据+客户激活:助力企业精细化运营,提升市场活动投资回报率
一、业务背景
在市场经济中,客户及其需求一直是决定企业生存与发展的关键因素,客户资源是企业发展的生命线。而现在,产品的生命周期更短,客户的需求也更加个性化,市场的激烈竞争,使得如何吸引客户、保留客户、提高客户的满意度、忠诚度成为企业生存的关键。
在经过了抢占市场份额,“跑马圈地”式的粗放扩张之后,客户质量成为了企业当前普遍面临的一道难题。各企业推出的促销活动往往具有同质性,难以形成客户黏性,客户忠诚度低。伴随着业务周期缩短和成本下降,客户在企业转移成本越来越低,企业对客户无法形成有效阻力。
二、痛点与需求
当前,客户活跃度低,大量“僵尸客户”的存在作为痛点日益显现,成为了制约企业发展的问题之一,值得引起重视。长期来看,企业若不能很好地调动用户的积极性,对激活“僵尸客户”的意愿不强,则意味着企业要支撑太多的“僵尸客户”,而市场营销活动投资成本依然和以前持平,甚至逐年增加,必然造成企业营销和管理资源浪费,企业盈利规模必然日渐萎缩,影响企业活力和企业长远发展。甚至严重情况下,企业自身也会变成“僵尸”企业,而企业僵尸化将更加广泛地抑制整个经济活力,并造成新一轮危机。
从营销的本质来说:营销的对象是客户,把握住了客户就相当于掌握了销售策略。现在,基于企业长期积累的数据,以及大数据应用技术的成熟,我们可以利用大数据解决方案来达到激活客户、提升客户活跃度的目标。
三、解决方案
针对以上问题,我们可以采用基于企业内部客户数据分析的激活客户解决方案。
简单从数据分析的角度,可以用RFM客户管理模型(即最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary))做简单的客户细分,然后通过细分客户来达到提高客户活跃度。但是,在机器学习下面,我们可以把RFM的关键指标作为模型训练的特征参与进来。当我们对该企业客户数据进行分析,就能清晰的刻画客户的特征,就等于掌握了营销的落地方向。我们可以使用基于企业客户数据分析的基础改良营销策略,最后,再通过简单的统计指标(如四分位数),看出营销效果是否得到改良。
1. 数据预处理
对于我们要完成的数据收集而言,我们需要去收集和整理如下方面的数据:基本属性和潜在隐性数据,大致分类如下:
2. 特征工程
对于显性的基本属性和隐性的特征进行向量化,包括去纲量,归一化等等操作。重点的任务是完成客户的模型建立,但是建模过程中涉及的数据以及涉数据难点包括如下内容:
1) 客户的属性和状态
这种显性的特征是对客户基本属性和状态的刻画。
2) 客户的相关性计算
在我们对目标客户不是很难捕捉到有用特征信息的时候,可以通过相关性的计算,找出相似的客户特征来推断客户特征,如下图:
3) 兴趣模型
通过对兴趣的把握,我们可以抓住客户长期稳定的爱好偏向特征。如下如所示:
4) 圈子标签
圈子标签实现的是对当前状态下,所处圈子的量化描述.如下如所示:
3. 行为建模
整个画像体系采用人工标注+多分类的方式实现打标的过程,对于人工标注都是采用领域知识进行判断。一般都是针对显性的基本属性进行建模,那么对于隐性的标签如何建模呢?例如流失客户的判断、客户生命周期的归属、客户价值属性的评定等等。对这个潜在的标签我们常常采用多分类来做。
以下经验供参考:
如遇到非线性数据量大,一般采用逻辑回归模型(LR)。
4. 构建画像
根据输出结果,我们可以有针对性地对客户实施以不同的市场活动。但是,画像永远也无法 100% 地描述一个人,只能做到不断地去逼近一个人,因此,我们既应根据变化的基础数据不断修正,又要根据已知数据来抽象出新的标签使画像越来越立体。
并且,在进行大规模市场活动前,要根据建立的模型进行小规模验证,在确认验证结果,与模型出来的预估基本吻合后,才能按照预定的方案进行营销活动。并且在营销活动的进行过程中,要不断的根据实际反馈修正模型,并根据修正后的模型进行新一轮的活动,从而使得整个营销活动与之前的预估相比十分精确。
五、效果
训练结果表明,基于企业内部客户数据分析的激活客户解决方案,比起传统的市场活动,在质量与效率上,达到了更高的效果。
1.它通过分析企业的经营数据,帮助企业实现了市场营销活动投放的科学性、及时性、精准性通过辅助决策,让市场营销投放客户更加精准,从而实现投资回报率、营销响应率、资产水平等业务目标的最大化;
2.通过对客户细致的分类和评级,能够有效锁定目标客户,了解客户不同的偏好、购买倾向、利润贡献度、营销成本、接触策略和其它沟通目标,进行有个性化的有针对性服务,最大限度地满足了客户需求,提升了客户满意度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29