
大数据+客户激活:助力企业精细化运营,提升市场活动投资回报率
一、业务背景
在市场经济中,客户及其需求一直是决定企业生存与发展的关键因素,客户资源是企业发展的生命线。而现在,产品的生命周期更短,客户的需求也更加个性化,市场的激烈竞争,使得如何吸引客户、保留客户、提高客户的满意度、忠诚度成为企业生存的关键。
在经过了抢占市场份额,“跑马圈地”式的粗放扩张之后,客户质量成为了企业当前普遍面临的一道难题。各企业推出的促销活动往往具有同质性,难以形成客户黏性,客户忠诚度低。伴随着业务周期缩短和成本下降,客户在企业转移成本越来越低,企业对客户无法形成有效阻力。
二、痛点与需求
当前,客户活跃度低,大量“僵尸客户”的存在作为痛点日益显现,成为了制约企业发展的问题之一,值得引起重视。长期来看,企业若不能很好地调动用户的积极性,对激活“僵尸客户”的意愿不强,则意味着企业要支撑太多的“僵尸客户”,而市场营销活动投资成本依然和以前持平,甚至逐年增加,必然造成企业营销和管理资源浪费,企业盈利规模必然日渐萎缩,影响企业活力和企业长远发展。甚至严重情况下,企业自身也会变成“僵尸”企业,而企业僵尸化将更加广泛地抑制整个经济活力,并造成新一轮危机。
从营销的本质来说:营销的对象是客户,把握住了客户就相当于掌握了销售策略。现在,基于企业长期积累的数据,以及大数据应用技术的成熟,我们可以利用大数据解决方案来达到激活客户、提升客户活跃度的目标。
三、解决方案
针对以上问题,我们可以采用基于企业内部客户数据分析的激活客户解决方案。
简单从数据分析的角度,可以用RFM客户管理模型(即最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary))做简单的客户细分,然后通过细分客户来达到提高客户活跃度。但是,在机器学习下面,我们可以把RFM的关键指标作为模型训练的特征参与进来。当我们对该企业客户数据进行分析,就能清晰的刻画客户的特征,就等于掌握了营销的落地方向。我们可以使用基于企业客户数据分析的基础改良营销策略,最后,再通过简单的统计指标(如四分位数),看出营销效果是否得到改良。
1. 数据预处理
对于我们要完成的数据收集而言,我们需要去收集和整理如下方面的数据:基本属性和潜在隐性数据,大致分类如下:
2. 特征工程
对于显性的基本属性和隐性的特征进行向量化,包括去纲量,归一化等等操作。重点的任务是完成客户的模型建立,但是建模过程中涉及的数据以及涉数据难点包括如下内容:
1) 客户的属性和状态
这种显性的特征是对客户基本属性和状态的刻画。
2) 客户的相关性计算
在我们对目标客户不是很难捕捉到有用特征信息的时候,可以通过相关性的计算,找出相似的客户特征来推断客户特征,如下图:
3) 兴趣模型
通过对兴趣的把握,我们可以抓住客户长期稳定的爱好偏向特征。如下如所示:
4) 圈子标签
圈子标签实现的是对当前状态下,所处圈子的量化描述.如下如所示:
3. 行为建模
整个画像体系采用人工标注+多分类的方式实现打标的过程,对于人工标注都是采用领域知识进行判断。一般都是针对显性的基本属性进行建模,那么对于隐性的标签如何建模呢?例如流失客户的判断、客户生命周期的归属、客户价值属性的评定等等。对这个潜在的标签我们常常采用多分类来做。
以下经验供参考:
如遇到非线性数据量大,一般采用逻辑回归模型(LR)。
4. 构建画像
根据输出结果,我们可以有针对性地对客户实施以不同的市场活动。但是,画像永远也无法 100% 地描述一个人,只能做到不断地去逼近一个人,因此,我们既应根据变化的基础数据不断修正,又要根据已知数据来抽象出新的标签使画像越来越立体。
并且,在进行大规模市场活动前,要根据建立的模型进行小规模验证,在确认验证结果,与模型出来的预估基本吻合后,才能按照预定的方案进行营销活动。并且在营销活动的进行过程中,要不断的根据实际反馈修正模型,并根据修正后的模型进行新一轮的活动,从而使得整个营销活动与之前的预估相比十分精确。
五、效果
训练结果表明,基于企业内部客户数据分析的激活客户解决方案,比起传统的市场活动,在质量与效率上,达到了更高的效果。
1.它通过分析企业的经营数据,帮助企业实现了市场营销活动投放的科学性、及时性、精准性通过辅助决策,让市场营销投放客户更加精准,从而实现投资回报率、营销响应率、资产水平等业务目标的最大化;
2.通过对客户细致的分类和评级,能够有效锁定目标客户,了解客户不同的偏好、购买倾向、利润贡献度、营销成本、接触策略和其它沟通目标,进行有个性化的有针对性服务,最大限度地满足了客户需求,提升了客户满意度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25