
重塑现有商业模式大数据产业或将迎来收获期
近年来,“大数据”逐渐从学术概念走向产业应用,并成为互联网界争相逐鹿的“风口”。然而,虽然业内有关大数据的设想、研究、计划层出不穷,但大多数公司仍未实质享受到大数据所带来的变革红利。
如今,随着人脸识别、人工智能、云计算等技术日臻成熟,大数据应用也纷纷落地,并开始重塑现有商业模式。
时尚也能“定制”
中国“95后”年轻人最喜欢的颜色是RGB值为22/20/24的“不饱和黑色”,在买衣服时,他们最常与黑色搭配的颜色是“红、黄、蓝”,最爱买的服装材质分别是棉、羊毛和皮革,最爱买的花色分别是印花、涂鸦和字母……
以上结论来自于日前腾讯和电商平台唯品会共同发布的《中国“95后”流行色报告》。依托腾讯的AI(人工智能)人脸识别与图像处理技术,以腾讯QQ空间2万亿社交媒体照片和唯品会1亿电商用户销售数据为蓝本,两家企业共同“计算”出中国“95后”的穿衣喜好。
从2万亿张照片和1亿电商用户数据中提炼“时尚因子”并非易事。据腾讯集团副总裁、优图实验室负责人梁柱介绍,找到这些流行色,需要克服不少技术难点,比如QQ空间里用户上传照片主要是生活照,背景和颜色非常复杂,为了实现颜色准确获取,其技术团队借助很多人工智能算法,包括人体检测、衣服分割,将照片里的人体和衣服从背景中分割出来,其像素分割精度达到95%。
据了解,两家公司共同邀请设计师以计算结果为依据,设计流行服装,并计划在今年秋季在唯品会电商平台上线售卖。
“基于机器学习的人脸识别和图像处理技术,一直都是未来的技术热点,其应用范围十分广泛。目前腾讯优图的AI图像识别技术已经十分成熟,可以在不同场景下实现应用。” 梁柱表示。
不再“望数兴叹”
过去,大数据应用大多囿于营销层面,其实质是利用“数据大”的优势,以传统计算方式分析用户行为等市场要素,并非真正的大数据应用。而面对海量珍贵数据,往往无法真正使用,只能“望数兴叹”。
如今,大数据应用已经突破过去的数据捕捉和统计方法的局限,开始深入到产业链各个环节,成为由大数据贯穿始终的“闭环生态”。
在零售领域,继去年阿里巴巴提出“新零售”概念以后,新年伊始,阿里巴巴集团就与百联集团共同签署全面战略合作协议,宣布合力探索发展新零售模式。据阿里方面透露,双方将基于大数据和互联网技术,在全业态融合创新、新零售技术研发、供应链整合、会员系统互通、支付金融互联、物流体系协同等6个领域展开合作。
“新零售是利用互联网和大数据,将‘人、货、场’等传统商业要素进行重构的过程,包括重构生产流程、重构商家与消费者的关系、重构消费体验等。未来的商业将不再有线上线下之分,也不存在虚拟实体之别。”阿里巴巴集团CEO张勇表示。
在家电领域,据最新发布的《2016年度中国智能空调市场白皮书》显示,2016年国内智能空调业在制造、渠道、服务、资源、新技术应用水平等方面得到提升,特别是云和大数据技术的引用与资源共享,为同关联行业开展资源共享、服务创新打下了坚实的基础。
以家电企业海尔为例。依托大数据,海尔生产的空调不仅搭建了智能化节能体系,还将大数据跨界应用到供热、供电领域。在江苏,海尔空调云端数据已与国家电网有效对接,以此来调节居民的高峰用电负荷,降低电网峰谷差18.47%,大幅缓解电网运行压力。
实现“个性量产”
事实上,大数据应用的持续落地,正在解决过去生产上“个性化”与“量产化”之间的矛盾,并由此带来商业模式的变革。
过去,批量化生产的产品几乎无法满足客户的个性化需求,即使有了海量数据作为营销依据,也仅能做到将用户需求尽量细分,再在每个细分领域进行批量化生产。而随着互联网、大数据、云计划等技术的渗透,个性化、定制化需求的满足具有了可能性,个性化量产正在被尝试和探索。在唯品会高级总监陈菲菲看来,将大数据应用到时尚产业并进行电商化运营是一次大胆的跨界创新。“让照片大数据、销售大数据、人工智能跟时尚流行碰撞,让数据与艺术产生连接,也为时尚领域的创作提供更多的灵感和可能性。”陈菲菲说。
这种尝试给时尚界的生产模式带来的变革显而易见,即由过去以设计师创作为主导模式,转变为以用户为中心的个性化量产模式。消费数据将成为时尚行业生态链中的最宝贵资源,谁拥有更多的精准用户数据,谁就占有更多市场机会。
同样,在家电领域,通过联合研发智能仿生人技术,海尔空调可模拟人体30个身体部位、20种新陈代谢模式、162个神经元传感器以及17种温冷环境。同时依托仿生人,研发出自然风、自清洁、离子送风等原创技术和产品,实现千人千面的个性化节能,让批量生产的每一台空调都“不一样”。
在医疗健康领域,因每个人疾病史和基因构成的不同,过去针对病症作出的标准化治疗方案更像是技术限制下的“权宜之计”。如今,随着医疗传感器、监视器和诊断技术的突破,患者数据也变得完整、精细。以此为基础,人工智能系统就可以梳理数百万患者病历、基因组序列以及其他健康行为数据,从而匹配个性化的治疗方案。
种种趋势表明,这种商业模式的变革正在快速渗透至各个行业。而“个性量产”的普遍落地,也将在大数据的支撑下成为可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29