
人工智能+大数据将成为餐饮行业风向标
在互联网繁荣发展的时代,餐饮O2O成为现代餐饮人的谈论热点。如何利用好互联网向大众传递自己的品牌理念,让大众对自己的产品有更深的了解,通过互联网营销手段更好的为顾客服务并促进业务的增长,成为现代餐饮人关注的核心。
根据艾瑞的数据显示,餐饮O2O的市场规模占总餐饮规模比重正在逐渐增大,2015年中国餐饮O2O市场规模为1615.5亿元,占餐饮行业总体比重为5.0%,预计2018年餐饮O2O市场将达到2897.9亿元,市场不可谓不大。
餐饮O2O全服务链成重点
随着近几年出现互联网O2O领域商业的泡沫化,部分餐饮O2O企业对此领域的认同模式、理解发生错误的判断,导致该领域的公司业务不佳的有很多。餐饮O2O是指以餐饮业为基础的O2O经营模式,以传统餐饮业务为基础,借助互联网的方式方法提供服务。归根结底,餐饮O2O其实是餐饮行业信息化的一个过程,O2O前面阶段只是解决了把餐厅的一些基本信息搬上互联网的问题,比如菜单、评价、外卖等,这是远远不够的。真正改变餐饮行业互联网结合的途径来自餐饮全服务链的信息化改造和升级。
未来随着餐饮商户的后端管理争夺战日渐凸显,餐饮O2O将进入下一个纪元——大数据时代。整个营业管理,将通过终端的智能软硬件设备开始实现信息化。比如餐厅的点菜数据,会员管理等等。举个简单的例子就是有一天你去餐厅用手机点餐,你能看到某个菜被点了多少回等等有趣的应用,其背后都是大数据化越来越彻底的原因。
自建O2O平台渐成趋势
与其他第三方O2O平台的最大不同在于,通过专业的平台服务,商户将排队、支付、营销等一系列环节整合集成一体化,搭建自身专属的O2O平台,这是最基本方式。换言之,餐饮商户将自主独立地整合自身的顾客来源,而非依附于第三方O2O平台。餐饮商户可借助平台提供的各类营销工具,制定符合自身需求的解决方案。将顾客真正还给商户,从等位、点餐、支付和会员活动形成一条属于商户自身的场景化O2O闭环。
搭建自己的O2O平台还有一个很重要的优势是,所有的用户消费数据都可以沉淀到自己手中。在以往依赖第三方O2O平台时,用户的消费数据不是真正的沉淀到本地的,在一切以数据为基础的互联网时代,没有自己的数据就谈不上是信息化,大数据化就更无从说起,充其量只能说是自己有一个互联网的出口而已,这对餐饮商户来说并不是一个最好的转型方式。
“人工智能+大数据”是未来风向标
在餐厅向互联网转型的过程中,不得不说的就是最近风头正热的人工智能。提到人工智能,与之相伴的就是大数据,没有大数据的人工智能也无法称为人工智能。我们以前一直在谈大数据,但是对线下大数据没有一个很好的理解。真正的线下大数据是精确化的关系数据,和你建立关系的数据才是有效的数据。这样的大数据首先需要一个系统去吸收数据,对这些数据进行存储加工以后再去利用,没有吸收的过程就没有数据,没有数据也就没有人工智能。
目前,线下领域的大数据领域,掌贝处于领先地位,尤其是涉及到数据处理、数据利用这些问题。没有基于数据的人工智能不是真正的人工智能,掌贝帮助商户提高服务效率并沉淀客户数据,通过加工处理,提供二次营销。对于有技术能力的大数据团队来说,新形势下的线下店铺大数据是全新的领域,而在这个领域当中,掌贝是先行者。
就拿之前提到的全服务链作为例子。目前餐饮业,在没有大数据支撑下的营销大多都是千篇一律的价格战、打折、赠送菜品等等,无法提供针对特定消费者的个性化营销方案,比如,餐厅对会员送的一道菜恰好是这个消费者不喜欢吃的,那么你就无法起到促销的作用,消费者对这样促销活动也会越来越无感。
所谓个性化的营销方案,一定是根据对消费者来餐厅消费行为特征数据的积累与分析,完全根据他的特定需求制定出来的营销方案,通过数据分析,促销、推荐的菜品是有针对性的,一定会深得消费者的喜爱,这样也才能起到促销甚至感动消费者的效果。这些都是人工智能和大数据技术发展的成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23