
社交和电商不断融合发展 大数据将赋能时尚行业新零售
新零售已经成为如今消费领域的热词。如何定义新零售?笔者认为,新零售是以消费者体验为中心的数据驱动的泛零售形态。
新零售的特征包括:数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求;借助数字技术,物流业、大文娱等多元业态延伸出多元的零售形态;任何零售主体,消费者和商品既是物理的也是数字化的,企业内部和企业间流通的损耗最终可达到无限逼近“零”的理想状态。
如今,人们的一举一动都会留下数据痕迹。大数据是一种包罗万象且规模庞大的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据的价值在于对数据的“加工能力”,通过“加工”实现数据的“增值”。数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求,因此,企业需要更加精准的数据以洞察不同消费者需求。
如今,国民经济快速发展,人民生活水平提高,各方面消费力量兴起;用户更加注重商品品质,选择符合自身需要和消费特征的商品;商业回归产品与服务的本质,产生出更符合细分消费需求的商品和服务。
在这些宏观经济背景下,消费用户逐渐趋于细分,“泛90后”和女性,已经成为时尚产业两大主要目标客群,具有高学历、高信心、高收入、高频次、易种草、更细分等六大特征。以“泛90后”为例,泛90后人群有着和其他年龄层消费者完全不一样的面相。他们成长于物质已经比较充裕的年代,习惯于用互联网获取大量信息;他们是一群smart shopper,相比价格,他们更关注商品品质、服务体验和品牌个性等方面。
同时,针对女性消费的研究表明,女性消费者特别是年轻女性消费者的消费呈现比较高的消费频次,女性消费者已经非常习惯于社交型的电商形态,在社交的过程中吸取别人的购物建议,获取新的购物信息并在内心“种草”。而大量专门针对女性设计的产品崭露头角的背景则是女性细分化市场迎来非常好的发展。
未来用户的购物需求和购物场景,将会出现‘时空、信息、需求、渠道、生产’这五个‘碎片化’。因此也出现了社交电商、物联网、闪购等多元化的购物形式。基于时尚消费者的变化,未来时尚零售将出现场景化、数据化、个性化、社交化等四大趋势。
移动互联网时代,市场开始由传统价格导向转为场景导向,随着移动购物模式的多样化,与场景相关的应用将成为驱动消费者迁移的新增长点;随着对大数据的深度挖掘,对于用户风格喜好,款式,颜色,设计细节等的决策越来越多地被数据指导,对于用户的千人千面个性化推荐也将越发成熟;消费需求个性化在电商发展中快速演变,升级,适应用户的转变并期待引领用户消费观,一批垂直电商兴起,围绕人群深耕;在网红风靡、内容电商兴起及大数据的冲击与推动下,社交和电商不断融合发展,电商行业已逐渐向基于社会化发展。
新时尚电商例如美丽联合集团,就正在努力尝试借助大数据和新零售形式,帮助服装行业供给侧解决一直以来令人困扰的款式预测和库存问题。通过大数据分析,我们将可以得出更加准确的款式预测,并基于大数据进行款式判断算法,经过流通环节的测款等方法做到最大程度的精准库存预测,从而做到“零库存”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07