京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能和机器学习从模拟到超越人类
人工智能和机器学习两项前端技术已经成为了企业和消费者中的热词,但两者间的关系知道的人就要少很多。
人工智能和机器学习你俩啥关系
人工智能在很多行业都是个热门话题, 其应用已经开始深入到生活之中,我们每天都难免会和人工智能打交道。从机器人被用于各种工业制造、到Siri、Cortana等各类语音助手的兴起,再到各种智能设备的使用,人工智能作为一种工具,对生活的影响以及开始。
在过去,人工智能的形象并不好,无论是终结者还是霍金的警告,甚至是横扫棋坛的AlphaGo,人工智能都在以会对人类产生威胁的形象存在。但是,人工智能的本质真的如此吗?机器学习是否也是如此呢?
AlphaGo击败柯洁的秘诀在于跟自己下棋
机器学习在一些平台和解决方案之中,其表现往往超越了人类。而在广泛领域中的概念,机器学习是使智能设备通过模拟人类的机械运动、推理方式和解决问题的方法,来实现作业目标。
而由于机器学习的优秀表现,很多方面已经开始取代人类的表现。比如谷歌深度学习技术部门所推出的AlphaGo,已经成功的击败了我国的围棋世界排名世界第一的选手柯洁;而其他项目中,如无人驾驶和图像识别平台,其看待环境的可靠性和准确性均已经超越了人类在该领域的表现。
关系来看,机器学习是人工智能的一种应用,即以统计和数据驱动的方式来创造人工智能,帮助计算机程序改善性能并且完成学习任务。机器学习非常依赖数据,数据的质量或者创建数据的过程对于机器学习的成败至关重要。
2机器学习不简单
机器学习不简单
机器学习看起来简单,但是其并不容易。比如检测一个图形,在我们看来很容易,可是机器学习就要复杂很多。
举例来看,当创建了一个项目之后,需要其去寻找苹果的图片。通过将各种食物的照片进行对比后,我们需要收集苹果的数据特点,例如颜色是绿色或红色、圆的、有柄等。同样重要的是,项目在进行中还需要搜索区别开苹果的食物,比如香蕉是黄色狭长的,梨可能是绿色的,但是形状是瓢形,柄长等,这样可以避免选择了错误的水果。而如果数据出现错误或误差,那就会直接影响最终结果的准确性。
数据是机器学习的老师
当得到了需要的数据之后,就可以对这些数据贴标签并且进行分类,这就像进行一个棋盘类游戏一样。机器学习首先会在图形分类中犯很多错误,但是优势在于,机器学习会像圣斗士一样,不会被同一个错误击败两次,然后将其性能提高后再进行下一次尝试。
机器学习作为人工智能的一种应用,当其被应用于电脑上的时候,其学习任务的第一件事就是先对过去的历史数据进行检阅。由此,其可以通过自己的不断适应和理解来预测未来可能会出现的一个特定的场景。而当电脑学会了以这种方式来处理历史数据之后,其智能性会比此前更高,就可以当做是一种智能产品。
机器学习依赖数据的正确性
从历史数据中学习的方式是目前最成功的一种机器学习方法,其也产生了许多不同类型的人工智能设备。但是这种方法的最大限制就在于其信息必须是已知的,而且必然是来自于人类。
3人工智能不智能
人工智能不智能
如果只是在模仿人类,那么采用了机器学习的人工智能机器人是不可能超越人类的。但是,真正的人工智能绝非仅仅如此。
模仿人类不能是真真的智能
我们目前的人工智能所能够做到的效果有很多,比如在听音乐或者看视频的时候,会被按照个人喜好来推荐节目;通过追踪过去的购物和浏览习惯,购物网站推荐相应的产品或者服务等。这些平台中的应用仅仅只是在进行标准化的推送,其智能程度不过是在人类的教育之后形成的一种程序化进行。
而人工智能设备并不一定是像电影里一样,让每个人都有专属的机器人服务。事实上,我们需要的也不是机器,在服务中现如今已经有Siri、Alexa、Cortana等多种产品被认为很聪明,可是其依然不能算上真正的智能。
机器学习还能进步
这些平台或者应用的基础都是机器学习,借助机器学习,一些平台可以对大规模的数据集以毫秒为单位进行识别,然后模拟人类迅速评估一个场景,但是这种计算任务在现如今的标准的计算机之中可能会有难度。
而对机器学习创建预测规则集和模式识别的行为模式,其可以达到超越机器学习甚至不包括机器学习的方式来实现路线规划、系统调度、生产线掌握或者平台掌控等。这就达到了另一种人工智能的模式。
4人工智能不做第二个谁
回归到人工智能和机器学习的本质来看,机器学习正在逐渐的偏离原来模仿人类的方向,却在趋向真正的人工智能方向。人类和人工智能之间的智力差距正在缩小,人工智能正在变得越来越聪明,甚至在特定领域超越人类,因此拒绝模仿人类对人工智能的发展是有利的。
人工智能的发展一定会超越人类
当前有观点认为,人类甚至在高端的科研领域会被人工智能超越,因为计算等任务显然是人工智能更优,让人工智能脱离模仿人类的桎梏,让其积累更多的知识,即数据基础,人工智能的创新能力不可忽视,因此如果未来在实验室之中是人工智能为主力,人类只是打下手也不要惊讶。
霍金的警告不能忽视
人工智能和机器学习都是当前十分热门的技术,二者相伴相生。但是从模仿人类到超越人类,这一切的前提都需要有着如霍金一般的警觉,前提都是不能伤害人类,必须要以为人类服务为底线,这样才能更好的发展技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16