京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能和机器学习从模拟到超越人类
人工智能和机器学习两项前端技术已经成为了企业和消费者中的热词,但两者间的关系知道的人就要少很多。
人工智能和机器学习你俩啥关系
人工智能在很多行业都是个热门话题, 其应用已经开始深入到生活之中,我们每天都难免会和人工智能打交道。从机器人被用于各种工业制造、到Siri、Cortana等各类语音助手的兴起,再到各种智能设备的使用,人工智能作为一种工具,对生活的影响以及开始。
在过去,人工智能的形象并不好,无论是终结者还是霍金的警告,甚至是横扫棋坛的AlphaGo,人工智能都在以会对人类产生威胁的形象存在。但是,人工智能的本质真的如此吗?机器学习是否也是如此呢?
AlphaGo击败柯洁的秘诀在于跟自己下棋
机器学习在一些平台和解决方案之中,其表现往往超越了人类。而在广泛领域中的概念,机器学习是使智能设备通过模拟人类的机械运动、推理方式和解决问题的方法,来实现作业目标。
而由于机器学习的优秀表现,很多方面已经开始取代人类的表现。比如谷歌深度学习技术部门所推出的AlphaGo,已经成功的击败了我国的围棋世界排名世界第一的选手柯洁;而其他项目中,如无人驾驶和图像识别平台,其看待环境的可靠性和准确性均已经超越了人类在该领域的表现。
关系来看,机器学习是人工智能的一种应用,即以统计和数据驱动的方式来创造人工智能,帮助计算机程序改善性能并且完成学习任务。机器学习非常依赖数据,数据的质量或者创建数据的过程对于机器学习的成败至关重要。
2机器学习不简单
机器学习不简单
机器学习看起来简单,但是其并不容易。比如检测一个图形,在我们看来很容易,可是机器学习就要复杂很多。
举例来看,当创建了一个项目之后,需要其去寻找苹果的图片。通过将各种食物的照片进行对比后,我们需要收集苹果的数据特点,例如颜色是绿色或红色、圆的、有柄等。同样重要的是,项目在进行中还需要搜索区别开苹果的食物,比如香蕉是黄色狭长的,梨可能是绿色的,但是形状是瓢形,柄长等,这样可以避免选择了错误的水果。而如果数据出现错误或误差,那就会直接影响最终结果的准确性。
数据是机器学习的老师
当得到了需要的数据之后,就可以对这些数据贴标签并且进行分类,这就像进行一个棋盘类游戏一样。机器学习首先会在图形分类中犯很多错误,但是优势在于,机器学习会像圣斗士一样,不会被同一个错误击败两次,然后将其性能提高后再进行下一次尝试。
机器学习作为人工智能的一种应用,当其被应用于电脑上的时候,其学习任务的第一件事就是先对过去的历史数据进行检阅。由此,其可以通过自己的不断适应和理解来预测未来可能会出现的一个特定的场景。而当电脑学会了以这种方式来处理历史数据之后,其智能性会比此前更高,就可以当做是一种智能产品。
机器学习依赖数据的正确性
从历史数据中学习的方式是目前最成功的一种机器学习方法,其也产生了许多不同类型的人工智能设备。但是这种方法的最大限制就在于其信息必须是已知的,而且必然是来自于人类。
3人工智能不智能
人工智能不智能
如果只是在模仿人类,那么采用了机器学习的人工智能机器人是不可能超越人类的。但是,真正的人工智能绝非仅仅如此。
模仿人类不能是真真的智能
我们目前的人工智能所能够做到的效果有很多,比如在听音乐或者看视频的时候,会被按照个人喜好来推荐节目;通过追踪过去的购物和浏览习惯,购物网站推荐相应的产品或者服务等。这些平台中的应用仅仅只是在进行标准化的推送,其智能程度不过是在人类的教育之后形成的一种程序化进行。
而人工智能设备并不一定是像电影里一样,让每个人都有专属的机器人服务。事实上,我们需要的也不是机器,在服务中现如今已经有Siri、Alexa、Cortana等多种产品被认为很聪明,可是其依然不能算上真正的智能。
机器学习还能进步
这些平台或者应用的基础都是机器学习,借助机器学习,一些平台可以对大规模的数据集以毫秒为单位进行识别,然后模拟人类迅速评估一个场景,但是这种计算任务在现如今的标准的计算机之中可能会有难度。
而对机器学习创建预测规则集和模式识别的行为模式,其可以达到超越机器学习甚至不包括机器学习的方式来实现路线规划、系统调度、生产线掌握或者平台掌控等。这就达到了另一种人工智能的模式。
4人工智能不做第二个谁
回归到人工智能和机器学习的本质来看,机器学习正在逐渐的偏离原来模仿人类的方向,却在趋向真正的人工智能方向。人类和人工智能之间的智力差距正在缩小,人工智能正在变得越来越聪明,甚至在特定领域超越人类,因此拒绝模仿人类对人工智能的发展是有利的。
人工智能的发展一定会超越人类
当前有观点认为,人类甚至在高端的科研领域会被人工智能超越,因为计算等任务显然是人工智能更优,让人工智能脱离模仿人类的桎梏,让其积累更多的知识,即数据基础,人工智能的创新能力不可忽视,因此如果未来在实验室之中是人工智能为主力,人类只是打下手也不要惊讶。
霍金的警告不能忽视
人工智能和机器学习都是当前十分热门的技术,二者相伴相生。但是从模仿人类到超越人类,这一切的前提都需要有着如霍金一般的警觉,前提都是不能伤害人类,必须要以为人类服务为底线,这样才能更好的发展技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15