
R之回归分析广义线性模型(Generalized Linear Model)glm
1. 介绍
广义线性模型(Generalized Linear Model)是一般线性模型的推广,它使因变量的总体均值通过一个非线性连接函数而依赖于线性预测值,允许响应概率分布为指数分布族中的任何一员。许多广泛应用的统计模型都属于广义线性模型,如常用于研究二元分类响应变量的Logistic回归、Poisson回归和负二项回归模型等。一个广义线性模型包含以下三个部分:
①随机成分。
②线性成分。
③连接函数g。
各种常见的指数型分布及其主要参数
典型的连接函数及对应分布
广义线性模型的参数估计一般不能用最小二乘估计,常用加权最小二乘法或最大似然法估计,各回归系数β需用迭代方法求解。
2. 实现
R提供了拟合广义线性模型的函数glm(),其调用格式为
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
其中,
formula为拟合公式,与函数lm()中的参数formula用法相同;
family用于指定分布族,包括正态分布(gaussian)、二项分布(binomial)、泊松分布(poisson)和伪伽马分布(Gamma);
分布族还可以通过选项link来指定连接函数,默认值为family=gaussian (link=identity),二项分布默认值为family=binomial(link=logit);
data指定数据集;
offset指定线性函数的常数部分,通常反映已知信息;
control用于对待估参数的范围进行设置。
例:
车险保单索赔次数分组数据
已知索赔次数服从泊松分布,相应的连接函数常用对数连接函数,模型可以写为
下面用R实现,首先建立数据集,分类变量直接输入定性的取值即可,glm()分析时会自动转换成矩阵X,注意参数family的写法。
> dat=data.frame(
y=c(42, 37, 10, 101, 73, 14),
n=c(500, 1200, 100, 400, 500, 300),
type=rep(c('小','中','大'),2),
gender=rep(c('男','女'),each=3)
)
> dat$logn=log(dat$n) #风险暴露数取对数
#offset风险单位数事先已知
> dat.glm=glm(y~type+gender,offset=logn,data=dat,family=poisson(link=log))
> summary(dat.glm) #glm的输出结果
估计的回归系数都是非常显著的;Null deviance可以认为是模型的残差,它的值越小说明模型拟合效果越好;模型的AIC统计量为61.68,它和deviance一起可以用来作为判断标准,选取合适的分布族和链接函数。
下面通过作图来观察模型拟合的效果,首先提取模型的预测值,注意函数predict()提取的是线性部分的拟合值,在对数连接函数下,要得到Y的拟合值,应当再做一次指数变换。以实际观测值为横坐标,模型拟合值为纵坐标作图,散点越接近直线y=x,说明模型的拟合效果越好。
> dat.pre=predict(dat.glm)
> layout(1) #取消绘图区域分割
> plot(y,exp(dat.pre),xlab='观测值',ylab='拟合值',main="索赔次数的拟合效果",pch="*")
> abline(0,1) #添加直线y=x,截距为0,斜率为1
若假设上例中的索赔次数服从负二项分布,在R中应输入指令:
> library(MASS)
> attach(dat)
> dat.glmnb=glm.nb(y~type+gender+offset(logn)) #负二项回归
> summary(dat.glmnb) #输出结果
负二项回归拟合的模型AIC为60.45,残差Null deviance为16.6831,小于泊松回归拟合的残差值,说明负二项分布的广义线性模型更加稳定,但从回归系数的显著性上看,泊松回归拟合的变量系数更加显著。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29