
对于常规的多重模型(multiple model)拟合,最基本的函数是lm()。 下面是调用它的方式的一种改进版:
>fitted.model<- lm(formula, data =data.frame)
例如
> fm2 <- lm(y ~ x1 + x2, data = production)
将会拟合 y 对 x1 和 x2 的多重回归模型(和一个隐式的截距项)。
一个重要的(技术上可选)参数是data = production。它指定任何构建这个模型的参数首先必须来自 数据框 production。 这里不需要考虑数据框 production 是否被绑定在搜索路径中。
广义线性建模是线性模型在研究响应值的非正态分布以及非线性模型的简洁直接的线性转化 时的一种发展。 广义线性模型 是基于下面一系列 假设前提的:
eta = beta_1 x_1 + beta_2 x_2 +...+ beta_p x_p,
因此 x_i 当且仅当 beta_i 等于0时对 y 的分布没有影响。
f_Y(y; mu, phi) = exp((A/phi) * (y lambda(mu) - gamma(lambda(mu))) + tau(y, phi))
其中 phi 是度量参数(scale parameter)(可能已知),对所有观测 恒定;A 是一个先验的权重,假定知道但是 可能随观测不同有所不同;mu是 y 的均值。 也就是说假定 y 的分布是由 均值和一个可能的度量参数决定的。
mu = m(eta), eta = m^{-1}(mu) = ell(mu)
该可逆函数 ell() 称为 关联函数(link function)。
这些假定比较宽松,足以包括统计实践中大多数有用的统计模型, 但也足够严谨,使得可以发展计算和推论中一致的方法( 至少可以近似一致)。 读者如果想了解这方面最新的进展,可以 参考 McCullagh & Nelder (1989) 或者 Dobson (1990)。
R 提供了一系列广义线性建模工具,从类型上来说包括 gaussian, 二项式, poisson, 反 gaussian 和 gamma 模型的响应变量分布以及 在响应变量分布没有明确给定时的逆似然(quasi-likelihood)模型。 在后者,方差函数(variance function) 可以认为是均值的函数,但是在另外一些情况下, 该函数可以由响应变量的分布得到。
每一种响应分布允许各种关联函数将均值和线性预测器关联起来。 这些自动关联函数如 下表所示:
Family name | Link functions |
---|---|
binomial | logit,probit,log,cloglog |
gaussian | identity,log,inverse |
Gamma | identity,inverse,log |
inverse.aussian | 1/mu^2,identity,inverse,log |
poisson | identity,log,sqrt |
quasi | logit,probit,cloglog,identity,inverse,log,1/mu^2,sqrt |
这些用于模型构建过程中的响应分布,关联函数和各种 其他必要的信息统称为 广义线性模型的族(family)。
既然响应的分布仅仅通过单一的一个线性函数依赖于 刺激变量,那么用于线性模型的机制同样 可以用于指定一个广义模型的线性部分。 但是族必须以一种不同的方式指定。
R 用于广义线性回归的函数是glm(), 它的使用形式为
>fitted.model<- glm(formula, family=family.generator, data=data.frame)
和lm()相比,唯一的一个新特性就是描述族的参数family.generator。 它是产生函数和表达式列表的函数名字。这些函数 用于定义和控制模型的构建与计算过程。 尽管开始看起来有点复杂, 但它们非常容易 使用。
这些名字是标准的。程序给定的族生成器可以参见 Families 列表中 的“族名”。当选择一个关联函数时, 该关联函数名和族名可以同时在括弧里面作为 参数设定。在拟(quasi) 家族里面,方差函数也是以这种方式设定。
一些例子可能会使这个过程更清楚。
命令
> fm <- glm(y ~ x1 + x2, family = gaussian, data = sales)
和下面的命令结果一致。
> fm <- lm(y ~ x1+x2, data=sales)
但是效率上,前者差一点。注意,gaussian 族没有相关参数, 因此它不提供关联函数的。 如一个问题需要用非标准关联函数的 gaussian 族, 那么只能采用我们后面讨论的拟族。
考虑 Silvey (1970) 提供的一个小的例子。
在 Kalythos 的 Aegean 岛上,男性居民常常患有 一种先天的眼科疾病,并且随着年龄的增长而变的愈显著。 现在搜集了各种年龄段岛上男性居民的样本,同时记录了盲眼的数目。 数据显示如下:
年龄: | 20 | 35 | 45 | 55 | 70 |
No. 检测: | 50 | 50 | 50 | 50 | 50 |
No. 盲眼: | 6 | 17 | 26 | 37 | 44 |
我们想知道的是这些数据是否吻合 logistic 和 probit 模型, 并且分别估计各个模型的 LD50,也就是一个男性居民盲眼的概率 为50%时候的年龄。
如果 y 和 n 是年龄为 x 时的盲眼数目和检测 样本数目,两种模型的形式都为 y ~ B(n, F(beta_0 + beta_1 x)), 其中在 probit 模型中, F(z) = Phi(z) 是标准的正态分布函数,而在 logit 模型 (默认)中, F(z) = e^z/(1+e^z)。 这两种模型中, LD50 = – beta_0/beta_1 ,即分布函数的参数为0时 所在的点。
第一步是把数据转换成数据框。
> kalythos <- data.frame(x = c(20,35,45,55,70), n = rep(50,5), y = c(6,17,26,37,44))
在glm()拟合二项式模型时,响应变量 有三种可能性:
我们采用的是第二种惯例。我们在数据框中 增加了一个矩阵:
> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)
为了拟合这些模型,我们采用
> fmp <- glm(Ymat ~ x, family = binomial(link=probit), data = kalythos) > fml <- glm(Ymat ~ x, family = binomial, data = kalythos)
既然 logit 的关联函数是默认的,因此我们可以在第二条命令中省略该参数。 为了查看拟合结果,我们使用
> summary(fmp) > summary(fml)
两种模型都拟合的很好。为了计算 LD50,我们可以 利用一个简单的函数:
> ld50 <- function(b) -b[1]/b[2] > ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fml)); c(ldp, ldl)
从这些数据中得到的年龄分别是43.663年和 43.601年。
在 Poisson 族中,默认的关联函数是log。在实际操作中, 这一族常常用于拟合计数资料的 Poisson 对数线性模型。 这些计数资料的实际分布往往符合二项式分布。 这是一个非常重要而又庞大的话题,我们不想在这里深入展开。 它构成了非-gaussian 广义模型内容 的很大一部分。
有时候,实践中产生的 Poisson 数据在对数或者平方根 转化后可当作正态数据处理。 作为后者的另一种选择是,一个 Poisson 广义线性模型可以通过下面的例子 拟合:
> fmod <- glm(y ~ A + B + x, family = poisson(link=sqrt), data = worm.counts)
对于所有的族,响应变量的方差依赖于均值并且拥有 作为系数(multiplier)的尺度参数。 方差对均值的依赖方式是响应分布的一个特性; 例如对于poisson分布 Var(y) = mu。
对于拟似然估计和推断,我们不是设定精确的响应分布而是 设定关联函数和方差函数的形式。因为关联函数和方差函数都依赖于均值。 既然拟似然估计 和 gaussian 分布使用的技术非常相似, 因此这一族顺带提供了一种用非标准关联函数或者方差函数 拟合gaussian模型的 方法。
例如,考虑非线性回归的拟合 y = theta_1 z_1 / (z_2 – theta_2) + e 同样还可以写成 y = 1 / (beta_1 x_1 + beta_2 x_2) + e 其中 x_1 = z_2/z_1, x_2 = -1/x_1, beta_1 = 1/theta_1, and beta_2 = theta_2/theta_1。 假如有适合的数据框,我们可以如下 进行非线性拟合
> nlfit <- glm(y ~ x1 + x2 - 1, family = quasi(link=inverse, variance=constant), data = biochem)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18