
对于常规的多重模型(multiple model)拟合,最基本的函数是lm()。 下面是调用它的方式的一种改进版:
>fitted.model<- lm(formula, data =data.frame)
例如
> fm2 <- lm(y ~ x1 + x2, data = production)
将会拟合 y 对 x1 和 x2 的多重回归模型(和一个隐式的截距项)。
一个重要的(技术上可选)参数是data = production。它指定任何构建这个模型的参数首先必须来自 数据框 production。 这里不需要考虑数据框 production 是否被绑定在搜索路径中。
广义线性建模是线性模型在研究响应值的非正态分布以及非线性模型的简洁直接的线性转化 时的一种发展。 广义线性模型 是基于下面一系列 假设前提的:
eta = beta_1 x_1 + beta_2 x_2 +...+ beta_p x_p,
因此 x_i 当且仅当 beta_i 等于0时对 y 的分布没有影响。
f_Y(y; mu, phi) = exp((A/phi) * (y lambda(mu) - gamma(lambda(mu))) + tau(y, phi))
其中 phi 是度量参数(scale parameter)(可能已知),对所有观测 恒定;A 是一个先验的权重,假定知道但是 可能随观测不同有所不同;mu是 y 的均值。 也就是说假定 y 的分布是由 均值和一个可能的度量参数决定的。
mu = m(eta), eta = m^{-1}(mu) = ell(mu)
该可逆函数 ell() 称为 关联函数(link function)。
这些假定比较宽松,足以包括统计实践中大多数有用的统计模型, 但也足够严谨,使得可以发展计算和推论中一致的方法( 至少可以近似一致)。 读者如果想了解这方面最新的进展,可以 参考 McCullagh & Nelder (1989) 或者 Dobson (1990)。
R 提供了一系列广义线性建模工具,从类型上来说包括 gaussian, 二项式, poisson, 反 gaussian 和 gamma 模型的响应变量分布以及 在响应变量分布没有明确给定时的逆似然(quasi-likelihood)模型。 在后者,方差函数(variance function) 可以认为是均值的函数,但是在另外一些情况下, 该函数可以由响应变量的分布得到。
每一种响应分布允许各种关联函数将均值和线性预测器关联起来。 这些自动关联函数如 下表所示:
Family name | Link functions |
---|---|
binomial | logit,probit,log,cloglog |
gaussian | identity,log,inverse |
Gamma | identity,inverse,log |
inverse.aussian | 1/mu^2,identity,inverse,log |
poisson | identity,log,sqrt |
quasi | logit,probit,cloglog,identity,inverse,log,1/mu^2,sqrt |
这些用于模型构建过程中的响应分布,关联函数和各种 其他必要的信息统称为 广义线性模型的族(family)。
既然响应的分布仅仅通过单一的一个线性函数依赖于 刺激变量,那么用于线性模型的机制同样 可以用于指定一个广义模型的线性部分。 但是族必须以一种不同的方式指定。
R 用于广义线性回归的函数是glm(), 它的使用形式为
>fitted.model<- glm(formula, family=family.generator, data=data.frame)
和lm()相比,唯一的一个新特性就是描述族的参数family.generator。 它是产生函数和表达式列表的函数名字。这些函数 用于定义和控制模型的构建与计算过程。 尽管开始看起来有点复杂, 但它们非常容易 使用。
这些名字是标准的。程序给定的族生成器可以参见 Families 列表中 的“族名”。当选择一个关联函数时, 该关联函数名和族名可以同时在括弧里面作为 参数设定。在拟(quasi) 家族里面,方差函数也是以这种方式设定。
一些例子可能会使这个过程更清楚。
命令
> fm <- glm(y ~ x1 + x2, family = gaussian, data = sales)
和下面的命令结果一致。
> fm <- lm(y ~ x1+x2, data=sales)
但是效率上,前者差一点。注意,gaussian 族没有相关参数, 因此它不提供关联函数的。 如一个问题需要用非标准关联函数的 gaussian 族, 那么只能采用我们后面讨论的拟族。
考虑 Silvey (1970) 提供的一个小的例子。
在 Kalythos 的 Aegean 岛上,男性居民常常患有 一种先天的眼科疾病,并且随着年龄的增长而变的愈显著。 现在搜集了各种年龄段岛上男性居民的样本,同时记录了盲眼的数目。 数据显示如下:
年龄: | 20 | 35 | 45 | 55 | 70 |
No. 检测: | 50 | 50 | 50 | 50 | 50 |
No. 盲眼: | 6 | 17 | 26 | 37 | 44 |
我们想知道的是这些数据是否吻合 logistic 和 probit 模型, 并且分别估计各个模型的 LD50,也就是一个男性居民盲眼的概率 为50%时候的年龄。
如果 y 和 n 是年龄为 x 时的盲眼数目和检测 样本数目,两种模型的形式都为 y ~ B(n, F(beta_0 + beta_1 x)), 其中在 probit 模型中, F(z) = Phi(z) 是标准的正态分布函数,而在 logit 模型 (默认)中, F(z) = e^z/(1+e^z)。 这两种模型中, LD50 = – beta_0/beta_1 ,即分布函数的参数为0时 所在的点。
第一步是把数据转换成数据框。
> kalythos <- data.frame(x = c(20,35,45,55,70), n = rep(50,5), y = c(6,17,26,37,44))
在glm()拟合二项式模型时,响应变量 有三种可能性:
我们采用的是第二种惯例。我们在数据框中 增加了一个矩阵:
> kalythos$Ymat <- cbind(kalythos$y, kalythos$n - kalythos$y)
为了拟合这些模型,我们采用
> fmp <- glm(Ymat ~ x, family = binomial(link=probit), data = kalythos) > fml <- glm(Ymat ~ x, family = binomial, data = kalythos)
既然 logit 的关联函数是默认的,因此我们可以在第二条命令中省略该参数。 为了查看拟合结果,我们使用
> summary(fmp) > summary(fml)
两种模型都拟合的很好。为了计算 LD50,我们可以 利用一个简单的函数:
> ld50 <- function(b) -b[1]/b[2] > ldp <- ld50(coef(fmp)); ldl <- ld50(coef(fml)); c(ldp, ldl)
从这些数据中得到的年龄分别是43.663年和 43.601年。
在 Poisson 族中,默认的关联函数是log。在实际操作中, 这一族常常用于拟合计数资料的 Poisson 对数线性模型。 这些计数资料的实际分布往往符合二项式分布。 这是一个非常重要而又庞大的话题,我们不想在这里深入展开。 它构成了非-gaussian 广义模型内容 的很大一部分。
有时候,实践中产生的 Poisson 数据在对数或者平方根 转化后可当作正态数据处理。 作为后者的另一种选择是,一个 Poisson 广义线性模型可以通过下面的例子 拟合:
> fmod <- glm(y ~ A + B + x, family = poisson(link=sqrt), data = worm.counts)
对于所有的族,响应变量的方差依赖于均值并且拥有 作为系数(multiplier)的尺度参数。 方差对均值的依赖方式是响应分布的一个特性; 例如对于poisson分布 Var(y) = mu。
对于拟似然估计和推断,我们不是设定精确的响应分布而是 设定关联函数和方差函数的形式。因为关联函数和方差函数都依赖于均值。 既然拟似然估计 和 gaussian 分布使用的技术非常相似, 因此这一族顺带提供了一种用非标准关联函数或者方差函数 拟合gaussian模型的 方法。
例如,考虑非线性回归的拟合 y = theta_1 z_1 / (z_2 – theta_2) + e 同样还可以写成 y = 1 / (beta_1 x_1 + beta_2 x_2) + e 其中 x_1 = z_2/z_1, x_2 = -1/x_1, beta_1 = 1/theta_1, and beta_2 = theta_2/theta_1。 假如有适合的数据框,我们可以如下 进行非线性拟合
> nlfit <- glm(y ~ x1 + x2 - 1, family = quasi(link=inverse, variance=constant), data = biochem)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01