京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据怎么赚钱
6月初,菜鸟与顺丰互相指责对方关闭数据接口,这场关于数据的大战引发了各界关注。快递行业的巨头为何如此重视对数据的争夺?大数据市场有多大?大数据怎么赚钱?针对这些问题,经济日报·中国经济网记者采访了业内专家和企业。
大数据市场有多大
“大数据的市场规模没有天花板。”国务院发展研究中心信息中心研究处处长李广乾认为。不过细想,这正是目前各大企业和资本疯狂追逐大数据产业的重要原因。
“单独讨论大数据意义不大,它是依附于具体业务,和各个行业密切相关的。”李广乾认为,大数据产业规模和两大因素相关:一是经济发展水平,需要大数据的业务越多,市场体量就越大;二是信息化发展水平,能够产生数据的终端越多,数据就会越聚越多,而数据的生产是没有上限的。
目前,大数据的金矿还仅是开挖了“冰山一角”。全球来看,Gartner2016年最新的技术成熟度曲线显示,大数据作为新兴领域,已经进入应用发展阶段,基础设施建设带来的规模性高速增长出现逐步放缓的趋势,技术创新和商业模式创新推动各行业应用逐步成熟,应用创造的价值在市场规模中的比重日益增大,并成为新的增长动力。
从总体规模看,2016年,全球大数据市场规模实现16.5%的增长,预计将连续3年保持增速在15%左右。同时,大数据成为全球IT支出新的增长点,2016年,有近40%的企业正在实施和扩大大数据技术的应用,另有30%计划在未来12个月内应用大数据。
“说大数据产业是一张画得很大的饼显然是片面的。”工信部赛迪研究院软件所所长潘文预测,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节,2016年达到3100亿元,将在2020年超过1万亿元;大数据关联产业规模2016年超过5万亿元,将在2020年超过10万亿元;大数据融合产业规模2016年达到3.5万亿元,将在2020年超过20万亿元。
“从大数据核心产业结构看,基于大数据的服务是大数据核心产业的主体,其规模约占大数据核心产业规模的90%,未来,服务也将是大数据产业的最核心部分。”潘文说。
做数据“搬运工”
目前国内大数据公司分为两类:一类是已有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头及华为、浪潮、中兴等企业,涵盖了数据采集、数据存储、数据分析、数据可视化及数据安全等领域;另一类则是初创大数据公司,依靠大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。
不同的大数据公司,盈利模式也不相同。如果把大数据产业比作房地产开发,那么海量数据就是地产开发时的土地资源,数据挖掘开发就是地产搭建盖楼。大数据主要的盈利模式也是围绕这两方面展开,一是通过直接“搬运”数据赚钱,二是通过数据加工分析盈利。
“我们就像一个自来水厂一样,用户要你提供干净的自来水,对方可能是酒厂、饭店、饮料厂,他把你的水做成饮料或酒。”聚合数据就是一家主要依靠为客户提供数据盈利的公司,公司创始人左磊对其商业模式作了一个形象的比喻。
在开发APP应用过程中,左磊发现客户对于数据的需求非常大,但他们本身却没有能力去做这些事情。聚合数据的主营业务,就是整合市面上有价值的数据源,从车辆违章信息、航班火车查询、全国加油站实时油价,到在线试题、电影、股票,做成标准化的API(应用程序编程接口),开放给开发者、企业及微信公众号用户等使用,为他们免除数据收集、维护等环节。简言之,聚合数据是一家数据源公司,充当的是数据“搬运工”的角色。
在变现模式上,针对一些本身成本不高的服务,聚合数据会对用户实行免费,而对一些成本相对高的服务,会按照每个接口或服务的成本收取不同的费用。2016年,聚合数据光API接口一项营收就超过1000万元。
聚合数据的盈利模式是数据买卖市场一个有代表性的类型。另一个代表性类型是,国内乃至全球第一家大数据交易所——贵阳大数据交易所,自2015年4月正式挂牌运营以来,仅用两年多时间,就实现了可交易数据总量超过150PB,内容涵盖政府、金融、交通等30大类领域,并于今年上半年实现正现金流,预计今年底累计交易流水将突破2亿元人民币。
数据的“消化”和“利用”
如果说搬运数据是秀肌肉的“体力活”,那么分析数据并提供解决方案就是拼智商的“脑力活”,相当于把收集来的数据“消化”“利用”好。直接售卖数据是比较底层的盈利方式,而对数据进行处理加工则在商业模式上具备更多的想象空间。
数据分析可大致分为直接提供数据分析工具和输出解决方案两种模式。潘文说,数据分析工具通常可以实现情报挖掘、舆情分析、销售追踪、精准营销、个性化推荐、网站/APP分析等功能,收费方式采取按需购买,部分功能服务免费,部分功能服务收费。
阿里云的“数加”平台就是典型的数据工具盈利模式。阿里云大数据事业部总监徐常亮表示,阿里云“数加”平台,承载着阿里巴巴集团、蚂蚁金服的数据,可提供一站式的数据计算、加工、处理等服务,用户不用自建计算平台。此外,基于“数加”平台,阿里云还提供数十款应用工具,覆盖数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。
计算引擎之上,“数加”平台提供了最丰富的云端数据开发套件,包括数据集成、数据开发、调度系统、数据管理、运维视屏、数据质量、任务监控。在数据分析方面,通过移动数据分析产品,开发者可快速搭建日志采集、分析系统;通过“数加”平台BI报表产品,3分钟即可完成海量数据的分析报告。在机器学习方面,“数加”平台发布的机器学习工具,可基于海量数据实现对用户行为、行业走势、天气、交通等的预测。
大数据公司百分点的展厅内有一面弧形墙,可以24小时实时更新数据资料和图谱。这面墙上有全网当日产品销售统计和热销产品榜单,每一个产品都有详情介绍。百分点研发总监苏海波介绍,5.5亿用户的“画像”汇总于此,包括购物偏好、网购金额变化趋势、阅读兴趣等。用户的任何网上行为都会成为大数据的一部分,经过筛选加入到用户的数据中。通过与百分点合作,商户可以根据用户消费偏好,定向推送商品;旅行社可以定向推送旅游行程信息和报价;新闻资讯APP则可以推送用户感兴趣的信息。
在输出解决方案上,大数据还可以应用到医疗、教育、零售、通信等传统行业。通过大数据产生更多收益,节约成本,优化原有行业,衍生出新的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01