
大数据怎么赚钱
6月初,菜鸟与顺丰互相指责对方关闭数据接口,这场关于数据的大战引发了各界关注。快递行业的巨头为何如此重视对数据的争夺?大数据市场有多大?大数据怎么赚钱?针对这些问题,经济日报·中国经济网记者采访了业内专家和企业。
大数据市场有多大
“大数据的市场规模没有天花板。”国务院发展研究中心信息中心研究处处长李广乾认为。不过细想,这正是目前各大企业和资本疯狂追逐大数据产业的重要原因。
“单独讨论大数据意义不大,它是依附于具体业务,和各个行业密切相关的。”李广乾认为,大数据产业规模和两大因素相关:一是经济发展水平,需要大数据的业务越多,市场体量就越大;二是信息化发展水平,能够产生数据的终端越多,数据就会越聚越多,而数据的生产是没有上限的。
目前,大数据的金矿还仅是开挖了“冰山一角”。全球来看,Gartner2016年最新的技术成熟度曲线显示,大数据作为新兴领域,已经进入应用发展阶段,基础设施建设带来的规模性高速增长出现逐步放缓的趋势,技术创新和商业模式创新推动各行业应用逐步成熟,应用创造的价值在市场规模中的比重日益增大,并成为新的增长动力。
从总体规模看,2016年,全球大数据市场规模实现16.5%的增长,预计将连续3年保持增速在15%左右。同时,大数据成为全球IT支出新的增长点,2016年,有近40%的企业正在实施和扩大大数据技术的应用,另有30%计划在未来12个月内应用大数据。
“说大数据产业是一张画得很大的饼显然是片面的。”工信部赛迪研究院软件所所长潘文预测,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节,2016年达到3100亿元,将在2020年超过1万亿元;大数据关联产业规模2016年超过5万亿元,将在2020年超过10万亿元;大数据融合产业规模2016年达到3.5万亿元,将在2020年超过20万亿元。
“从大数据核心产业结构看,基于大数据的服务是大数据核心产业的主体,其规模约占大数据核心产业规模的90%,未来,服务也将是大数据产业的最核心部分。”潘文说。
做数据“搬运工”
目前国内大数据公司分为两类:一类是已有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头及华为、浪潮、中兴等企业,涵盖了数据采集、数据存储、数据分析、数据可视化及数据安全等领域;另一类则是初创大数据公司,依靠大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。
不同的大数据公司,盈利模式也不相同。如果把大数据产业比作房地产开发,那么海量数据就是地产开发时的土地资源,数据挖掘开发就是地产搭建盖楼。大数据主要的盈利模式也是围绕这两方面展开,一是通过直接“搬运”数据赚钱,二是通过数据加工分析盈利。
“我们就像一个自来水厂一样,用户要你提供干净的自来水,对方可能是酒厂、饭店、饮料厂,他把你的水做成饮料或酒。”聚合数据就是一家主要依靠为客户提供数据盈利的公司,公司创始人左磊对其商业模式作了一个形象的比喻。
在开发APP应用过程中,左磊发现客户对于数据的需求非常大,但他们本身却没有能力去做这些事情。聚合数据的主营业务,就是整合市面上有价值的数据源,从车辆违章信息、航班火车查询、全国加油站实时油价,到在线试题、电影、股票,做成标准化的API(应用程序编程接口),开放给开发者、企业及微信公众号用户等使用,为他们免除数据收集、维护等环节。简言之,聚合数据是一家数据源公司,充当的是数据“搬运工”的角色。
在变现模式上,针对一些本身成本不高的服务,聚合数据会对用户实行免费,而对一些成本相对高的服务,会按照每个接口或服务的成本收取不同的费用。2016年,聚合数据光API接口一项营收就超过1000万元。
聚合数据的盈利模式是数据买卖市场一个有代表性的类型。另一个代表性类型是,国内乃至全球第一家大数据交易所——贵阳大数据交易所,自2015年4月正式挂牌运营以来,仅用两年多时间,就实现了可交易数据总量超过150PB,内容涵盖政府、金融、交通等30大类领域,并于今年上半年实现正现金流,预计今年底累计交易流水将突破2亿元人民币。
数据的“消化”和“利用”
如果说搬运数据是秀肌肉的“体力活”,那么分析数据并提供解决方案就是拼智商的“脑力活”,相当于把收集来的数据“消化”“利用”好。直接售卖数据是比较底层的盈利方式,而对数据进行处理加工则在商业模式上具备更多的想象空间。
数据分析可大致分为直接提供数据分析工具和输出解决方案两种模式。潘文说,数据分析工具通常可以实现情报挖掘、舆情分析、销售追踪、精准营销、个性化推荐、网站/APP分析等功能,收费方式采取按需购买,部分功能服务免费,部分功能服务收费。
阿里云的“数加”平台就是典型的数据工具盈利模式。阿里云大数据事业部总监徐常亮表示,阿里云“数加”平台,承载着阿里巴巴集团、蚂蚁金服的数据,可提供一站式的数据计算、加工、处理等服务,用户不用自建计算平台。此外,基于“数加”平台,阿里云还提供数十款应用工具,覆盖数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。
计算引擎之上,“数加”平台提供了最丰富的云端数据开发套件,包括数据集成、数据开发、调度系统、数据管理、运维视屏、数据质量、任务监控。在数据分析方面,通过移动数据分析产品,开发者可快速搭建日志采集、分析系统;通过“数加”平台BI报表产品,3分钟即可完成海量数据的分析报告。在机器学习方面,“数加”平台发布的机器学习工具,可基于海量数据实现对用户行为、行业走势、天气、交通等的预测。
大数据公司百分点的展厅内有一面弧形墙,可以24小时实时更新数据资料和图谱。这面墙上有全网当日产品销售统计和热销产品榜单,每一个产品都有详情介绍。百分点研发总监苏海波介绍,5.5亿用户的“画像”汇总于此,包括购物偏好、网购金额变化趋势、阅读兴趣等。用户的任何网上行为都会成为大数据的一部分,经过筛选加入到用户的数据中。通过与百分点合作,商户可以根据用户消费偏好,定向推送商品;旅行社可以定向推送旅游行程信息和报价;新闻资讯APP则可以推送用户感兴趣的信息。
在输出解决方案上,大数据还可以应用到医疗、教育、零售、通信等传统行业。通过大数据产生更多收益,节约成本,优化原有行业,衍生出新的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02