京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言做数据分析(8)_数据的输入与输出之READ函数_数据分析师
read.table() 函数
1、用于读入表格(表)类型的数据,同时生成数据框对象。
2、读入的数据要求有规则的分隔符,默认有:空格、TAB、换行符、回车符;其它的分隔符,通过sep=来进行指定。
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown")
例如:
demo_3<-read.table('e:/demo_3.txt',header=T)

read.fwf()函数
1、适用用于读入数据相应没有相应的分隔符,但是读入的数据字段长度是固定长度。
2、数据导入R后,生成列表对象。
读入固定分隔长度的数据;
read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000)
例如:在这个数据中,前面的3个字符与接下来的3个数字表示名称、得分,因为二个字段之间没有分隔符号,但其长度是固定的,所以适合用本函数。
ABC123%$12
TEX124@#12
y o14 @@#
read.fwf('e:/demo_1.txt',widths=c(3,3),col.names=c('name','score'));

w <- readline()函数
1、用于程序的交互,根据输入的条件来判断下一步执行的方向;
2、通过键盘读入一行数据;
例如:根据输入的来判断后续程序的执行流程
Demo_2<-function()
{
input<-readline("DO you think R is hard to learn,Please give your choice:Y or N ")
if(input=="Y")
cat("Come on; Spent more time.\n")
else
cat("Good!")
}
Demo_2()

Readlines() 函数
1、控制读入的数据行数,非批处理,有点类似于数据库中的指标操作,可对文件中的数据逐行操作。2、这个对于读入日志类的数据很有用。例如:通过对读入数据的每行来判断是否有需要的数据,有再对数据进行处理;tips:该数据配合R中的正则表达式相关函数,对于处理不规则的数据很强大。
例如:
1、 与文件demo_1建立连接
con<- file("demo_3","r")
2、指定每次执行只读入一行;
RC<-readLines(con,n=1)
3、关闭联接
close(con)

说明:
1、如果读到文件的最后,则length(RC)=0;EOF文件最后返回的空值。
2、N控制每次读入几行;
3、当读到最后要重新开始的时间:seek(con=c,where=0),返回当前指标所有的位置
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01