京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术体系中的语义分析
本文介绍了语义的相关概念、特征,指出语义分析技术在大数据挖掘中的重要性,并给出了示例。
一、什么是语义
在现实世界中,事物所代表的概念的含义,以及它与其他概念之间的关系,可以被认为是语义。
语义是对符号的解释,比如“苹果是一种水果,含有丰富的矿物质和维生素。”就解释了“苹果”这个字符串(符号、概念),“《互联网大数据处理技术与应用》是国内第一本系统讲述互联网大数据技术的专著,由曾剑平编著,于2017年由清华大学出版社出版”则描述了《互联网大数据处理技术与应用》这本书(概念)的含义。
语义的典型特征包括:语义的客观性和主观性、语义的清晰性和模糊性、以及语义的领域性等。其中,模糊性主要体现在语义边界上,例如“胖”所具有的语义是一个模糊概念,边界并不清晰,用简单的判断逻辑是无法定义的。领域性是指对于一些词语含义的理解,需要在某个具体的领域中才有确定的结果,可能存在同一事物在不同领域中有不同理解的情况。例如“苹果”在水果食品领域和手机通信领域就具有不同的含义。
二、大数据中的语义分析
大数据4V特征中的一个典型特征是Variety,它有多方面的含义,其中最主要的是指数据类型的多样化。在表示一本图书时,可以有数值型、日期型、文本型等多种形式。
在“大数据价值挖掘的难点和重点:非结构化数据处理”一文中我们介绍了结构化数据的表示方法,如下表示了两本书B1、B2:
B1: (互联网大数据处理技术与应用,曾剑平,清华大学出版社,2017,大数据类)
B2: (数学之美,吴军、人民邮电出版社,2014,数学类)
在图书推荐之类的大数据应用中,要决定把什么书推荐给客户,其中最基本的问题是计算两本书的相似度。就B1、B2这两本书来说,出版年份2017和2014之间的相似度就比较容易计算,但是“大数据类”和“数学类”简单依靠字符串就无法准确计算了,“互联网大数据处理技术与应用”和“数学之美”等文本型的就更难定了。而这些问题在大数据分析及应用中是非常普遍的,因此,语义分析计算对于大数据分析应用而言其重要性是不言而喻的,直接影响到最终的大数据价值体现。
由于词汇作为字符串所能提供的信息量非常少,在词汇级别上进行语义分析,通常需要借助一定的语义知识库或语料库,这种知识库可以采用如图所示的语义结构,该结构是基于Wiki百科提取得到的。
基于该结构,计算“数学”和“大数据”之间的语义相关度可以采用基于语义图结构的最短路径法、基于概念结点信息量的计算方法等,具体可以计算方法参考文献[1]。
由于词汇在关系型数据表达中也是非常常见的基本信息,因此,语义分析问题在结构化大数据中同样很重要。比如城市字段中存储的“北京”、“上海”“厦门”等,如何计算它们之间的相关度,在涉及地区的大数据挖掘等应用中是一项基本要求。除了采用各种方法构建的语义结构图外,基于word2vec的训练计算方法也是不错的选择。
相比于词汇的语义,句子级别的语义分析技术在大数据分析挖掘中就更为常见。典型的应用场景包括在新闻报道的文本中寻找事件的组成要素及其关系,在评论文本中识别评论信息,例如“手机的屏幕很大”这句话中“手机”和“屏幕”、“大”和“很”都是一种修饰关系,“屏幕”和“大”则是一种陈述关系。汉语中的实词在进入句子后,词与词之间有多少种语义关系以及各种语义关系的名称,目前汉语语法学界还没有统一的说法。但是目前经常提到的主要语义关系有施事、受事、与事、工具、结果、方位、时间、目的、方式、原因、同事、材料、数量、基准、范围、条件、领属等。正是由于语义关系的多样性,也使得语义分析研究任务丰富多彩。但是由于计算机处理和推理能力的限制,目前,在该领域研究中只针对很少部分的语义关系分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16