京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术体系中的语义分析
本文介绍了语义的相关概念、特征,指出语义分析技术在大数据挖掘中的重要性,并给出了示例。
一、什么是语义
在现实世界中,事物所代表的概念的含义,以及它与其他概念之间的关系,可以被认为是语义。
语义是对符号的解释,比如“苹果是一种水果,含有丰富的矿物质和维生素。”就解释了“苹果”这个字符串(符号、概念),“《互联网大数据处理技术与应用》是国内第一本系统讲述互联网大数据技术的专著,由曾剑平编著,于2017年由清华大学出版社出版”则描述了《互联网大数据处理技术与应用》这本书(概念)的含义。
语义的典型特征包括:语义的客观性和主观性、语义的清晰性和模糊性、以及语义的领域性等。其中,模糊性主要体现在语义边界上,例如“胖”所具有的语义是一个模糊概念,边界并不清晰,用简单的判断逻辑是无法定义的。领域性是指对于一些词语含义的理解,需要在某个具体的领域中才有确定的结果,可能存在同一事物在不同领域中有不同理解的情况。例如“苹果”在水果食品领域和手机通信领域就具有不同的含义。
二、大数据中的语义分析
大数据4V特征中的一个典型特征是Variety,它有多方面的含义,其中最主要的是指数据类型的多样化。在表示一本图书时,可以有数值型、日期型、文本型等多种形式。
在“大数据价值挖掘的难点和重点:非结构化数据处理”一文中我们介绍了结构化数据的表示方法,如下表示了两本书B1、B2:
B1: (互联网大数据处理技术与应用,曾剑平,清华大学出版社,2017,大数据类)
B2: (数学之美,吴军、人民邮电出版社,2014,数学类)
在图书推荐之类的大数据应用中,要决定把什么书推荐给客户,其中最基本的问题是计算两本书的相似度。就B1、B2这两本书来说,出版年份2017和2014之间的相似度就比较容易计算,但是“大数据类”和“数学类”简单依靠字符串就无法准确计算了,“互联网大数据处理技术与应用”和“数学之美”等文本型的就更难定了。而这些问题在大数据分析及应用中是非常普遍的,因此,语义分析计算对于大数据分析应用而言其重要性是不言而喻的,直接影响到最终的大数据价值体现。
由于词汇作为字符串所能提供的信息量非常少,在词汇级别上进行语义分析,通常需要借助一定的语义知识库或语料库,这种知识库可以采用如图所示的语义结构,该结构是基于Wiki百科提取得到的。
基于该结构,计算“数学”和“大数据”之间的语义相关度可以采用基于语义图结构的最短路径法、基于概念结点信息量的计算方法等,具体可以计算方法参考文献[1]。
由于词汇在关系型数据表达中也是非常常见的基本信息,因此,语义分析问题在结构化大数据中同样很重要。比如城市字段中存储的“北京”、“上海”“厦门”等,如何计算它们之间的相关度,在涉及地区的大数据挖掘等应用中是一项基本要求。除了采用各种方法构建的语义结构图外,基于word2vec的训练计算方法也是不错的选择。
相比于词汇的语义,句子级别的语义分析技术在大数据分析挖掘中就更为常见。典型的应用场景包括在新闻报道的文本中寻找事件的组成要素及其关系,在评论文本中识别评论信息,例如“手机的屏幕很大”这句话中“手机”和“屏幕”、“大”和“很”都是一种修饰关系,“屏幕”和“大”则是一种陈述关系。汉语中的实词在进入句子后,词与词之间有多少种语义关系以及各种语义关系的名称,目前汉语语法学界还没有统一的说法。但是目前经常提到的主要语义关系有施事、受事、与事、工具、结果、方位、时间、目的、方式、原因、同事、材料、数量、基准、范围、条件、领属等。正是由于语义关系的多样性,也使得语义分析研究任务丰富多彩。但是由于计算机处理和推理能力的限制,目前,在该领域研究中只针对很少部分的语义关系分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15