京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中的回归诊断-car包
1、回归诊断的基本方法
opar<-par(no.readOnly=TRUE)
fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)
为理解这些图形,我们来回顾一下OLS回归的统计假设。
(1)正态性(主要使用QQ图)当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
(2)独立性 你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
(3)线性(使用左上角的图,该曲线尽量拟合所有点)
若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”Residuals
vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
(4)同方差性(左下角,点随机分布在曲线的周围)
若满足不变方差假设,那么在位置尺度图(Scale-Location
Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。最后一幅“残差与杠图”(Residuals vs
Leverage,右下)提供了你可能关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点
通过看图重新修改模型
newfit <- lm(weight ~ height + I(height^2), data = women[-c(13, 15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)
2、使用改进的方法进行
主要使用的car包,进行回归诊断
(1)自变量的正态分布
qqPlot()函数提供了更为精确的正态假设检验方法
library(car)
fit <- lm(Murder ~ Population + Illiteracy + Income +
Frost, data = states)
qqPlot(fit, labels = FALSE, simulate = TRUE, main = "Q-Q Plot")
(2)误差的独立性
durbinWatsonTest(fit)
lag Autocorrelation D-W Statistic p-value
1 -0.2006929 2.317691 0.248
Alternative hypothesis: rho != 0
(3)线性相关性
crPlots(fit, one.page = TRUE, ask = FALSE)
(4)同方差性
1、car包提供了两个有用的函数,可以判断误差方差是否恒定。ncvTest()函数生成一个计分检验,零假设为误差方差不变,备择假设为误差方差随着拟合值水平的变化而变化。
2、spreadLevelPlot()函数创建一个添加了最佳拟合曲线的散点图,展示标准化残差绝对值与拟合值的关系
library(car)
ncvTest(fit)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.746514 Df = 1 p = 0.1863156
满足方差不变 p = 0.1863156
spreadLevelPlot(fit)
3、线性模型假设的综合验证
library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)
Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
data = states)
Residuals:
Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.235e+00 3.866e+00 0.319 0.7510
Population 2.237e-04 9.052e-05 2.471 0.0173 *
Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
Income 6.442e-05 6.837e-04 0.094 0.9253
Frost 5.813e-04 1.005e-02 0.058 0.9541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = fit)
Value p-value Decision
Global Stat 2.7728 0.5965 Assumptions acceptable.
Skewness 1.5374 0.2150 Assumptions acceptable.
Kurtosis 0.6376 0.4246 Assumptions acceptable.
Link Function 0.1154 0.7341 Assumptions acceptable.
Heteroscedasticity 0.4824 0.4873 Assumptions acceptable.
4、多重共线性
如何检测多重共线性
library(car)
vif(fit)
Population Illiteracy Income Frost
1.245282 2.165848 1.345822 2.082547
sqrt(vif(fit)) > 2
Population Illiteracy Income Frost
FALSE FALSE FALSE FALSE
如何解决多重共线性?
逐步回归法(此法最常用的,也最有效)
R语言回归分析中的异常值点的介绍
(1)离群点
如何识别离群点?
1、Q-Q图,落在置信区间带[-2,2]外的点即可被认为是离群点。
2、一个粗糙的判断准则:标准化残差值大于2或者小于2的点可能是离群
3、library(car)
outlierTest(fit) 显示离群点
rstudent unadjusted p-value Bonferonni p
Nevada 3.542929 0.00095088 0.047544
(2)高杠杆值点
它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系
高杠杆值的观测点可通过帽子统计量(hat statistic)判断
hat.plot <- function(fit){
p <- length(coefficients(fit))
n <- length(fitted(fit))
plot(hatvalues(fit), main = "Index Plot of Hat Values")
abline(h = c(2, 3) * p/n, col = "red", lty = 2)
identify(1:n, hatvalues(fit), names(hatvalues(fit)))
}
hat.plot(fit)
(3)强影响点
强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么你就需要检测一下数据中是否存在强影响点了
cutoff <- 4/(nrow(states) - length(fit$coefficients) - 2)
plot(fit, which = 4, cook.levels = cutoff)
abline(h = cutoff, lty = 2, col = "red")
4、如何对线性模型进行改进?
1、删除观测点;
删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合
2、变量变换:
Box-Cox正态变换
library(car)
summary(powerTransform(states$Murder))
library(car)
boxTidwell(Murder ~ Population + Illiteracy, data = states)
3、添加或删除变量;
4、使用其他回归方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29