
SPSS详细操作:正态转换的多种方法
一、正偏态分布资料
1、轻度正偏态分布
偏度值>0,偏度值为其标准误差的2-3倍,即Z-score=2~3,此时认为资料分布呈现轻度的正偏态分布,可以考虑对变量x取根号开平方的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = SQRT(x)
(SQRT为开平方根Square Root缩写)
2、中度正偏态分布
偏度值>0,偏度值为其标准误差的3倍以上,即Z-score>3,此时认为资料分布呈现中度的正偏态分布,可以考虑对变量x取对数来进行转换。可以取自然对数(ln)或以10为底的对数(log10)。
SPSS语句如下:
COMPUTE x_new = LN(x)
COMPUTE x_new = LG10(x)
注意:LG10的纠正力度较强,有时甚至会矫枉过正,将正偏态转换为负偏态,因此在进行正态转换后一定要对该变量再次进行正态性检验。
3、重度正偏态分布
对于两端波动比较大的数据资料,极端值可能产生较大的影响,此时可以考虑取倒数的方法来进行转换。
SPSS语句如下:
COMPUTE x_new = 1/x
注意:根号下要求数据均为非负数(即≥0),对数要求数据均为正数(即>0),取倒数要求分母不为0, 如果变量x中出现上述情况,则需要先将其进行一定的转换,如x+K或K-x,再对其取根号、对数或倒数。其中K为一个常数,可以根据需要进行赋值,例如赋值为1,或取数据的最小值、最大值等。
二、负偏态分布资料
对于负偏态分布的数据资料,首先需要将负偏态资料进行反转,转换为正偏态,然后再参考正偏态分布资料的转换方法进行转换。
反转的方法:首先找出该数据系列的最大值max,用最大值+1,再减去每个数值
1、轻度负偏态分布
SPSS语句如下:
COMPUTE x_new = SQRT(max+1-x)
2、中度负偏态分布
SPSS语句如下:
COMPUTE x_new = LN(max+1-x)
COMPUTE x_new = LG10(max+1-x)
3、重度负偏态分布
SPSS语句如下:
COMPUTE x_new = 1/(max+1-x)
三、SPSS操作:函数转换法
以分析某人群甘油三酯(TG)的分布特征为例。
1、对TG分布进行正态性检验
采用上期介绍的Explore方法:Analyze→Descriptive Statistics→Explore
结果显示:偏度值为1.314>0,峰度值为1.596>0,偏度Z-score=1.314/0.172 = 7.640>3,Kolmogorov–Smirnov和Shapiro-Wilk检验P值均<0.001,从直方图也可以直观的看出TG在该人群中的分布呈现中度正偏态分布特征。
2、对TG进行正态转换
根据以上正态性检验结果,拟采用取对数的方法进行正态转换,以Log10为例。
(1) 选择Transform → Compute Variable
(2) 在Target Variable框中输入一个新的变量名,作为数据转换后的变量名,此处设定为TG_new
(3) 在Function group中选择Arithmetic,在Functions and Special Variables中双击Lg10,此时在Numeric Expression框中显示LG10(?)
(4) 从变量列表中双击TG,此时在Numeric Expression框中显示LG10(TG)
(5) 点击OK完成操作
3、对转换后的TG_new再次进行正态性检验
(1) 在结果输出的Descriptives表格中显示,偏度值为0.204≈0,峰度值为-0.338≈0,偏度Z-score=0.204/0.172=1.186<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和0.272,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的TG_new服从正态分布。
四、SPSS操作:正态得分法
对于初学者在初学时无法很好掌握数据资料分布特征的情况下,SPSS提供了一种通过计算正态得分的方法来实现正态转换。
1、操作过程
选择Transform→Rank Cases,将TG选入Variable(s)框中
点击Rank Type选项框,取消默认勾选的Rank,勾选Normal scores选项
在Proportion Estimation Formula下有4种方法可供选择,默认Blom方法,其他方法也可以进行尝试。点击OK完成操作。
2、结果解读
程序运行后在变量列表中多出了一个名为NTG的新变量,即为计算的正态得分,采用Explore方法对NTG进行正态性检验以验证转化效果。
(1) 在结果输出的Descriptives表格中显示,偏度值为0.001≈0,峰度值为-0.124≈0,偏度Z-score=0.001/0.172=0.006<1.96,提示服从正态分布。
(2) 在结果输出的Tests of Normality表格中显示,Kolmogorov-Smirnov和Shapiro-Wilk检验P值分别为0.200和1.000,均>0.05,提示服从正态分布。
(3) 从直方图和Q-Q图也可以直观的看出,转换后的NTG服从正态分布。
五、注意事项
1、不是任何非正态数据都可以进行正态转换,若有把握认为数据的总体分布是正态的时候才可以去做正态转换。如果通过变量转换的方法依然无法将数据转化为正态分布的话,就不再适用于T检验、方差分析等方法了,此时可以应用前期介绍过的非参数检验的方法来进行分析,例如Wilcoxon检验和Mann-Whitney U检验方法等。
2、在进行T检验、方差分析等方法时,要求每组数据均呈正态分布,因此当出现某一组数据正态,另一组数据非正态时,需要对两组数据同时进行转换。
3、在进行相关分析或线性回归时,要求变量间存在线性关系,如果因变量与某个自变量之间呈现出曲线趋势,此时转换的变量可以是自变量,也可以是因变量,或者两者均可。如果进行了变量变换,则应当重新绘制散点图,以保证线性趋势在变换后仍然存在。
4、在对线性回归模型进行解释时,如果使用函数转换的方法对变量进行了转换,则解释时应按照转换后的变量给予解释,或者可以根据转换时使用的函数关系,倒推原始自变量对原始因变量的效应大小。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29