
大数据技术助阵 传统产业迈向智能制造时代
有人认为传统产业对大数据技术的应用会非常落后,但作为传统家电制造企业来说,格力掌门人董明珠也曾表示,既然格力可以掌握空调的现状,也可以预知未来,还可以做数据分析判断等。在格力的经营理念中也明确写到“一个没有创新的企业是没有灵魂的企业”。格力在大数据应用上的探索已经初具成果。他们对科技潮流的把握非常敏锐,在大数据时代它更是以实际成功证明了大数据不仅可以与传统产业结合,而且还能以更智能的方式促进传统产业的发展。
格力集团董事长兼总裁董明珠在接受记者采访时曾表示,格力生产空调看起来是传统行业,但实际上也运用了大数据思维。“我们用互联网、大数据做空调,格力空调运行得怎么样,我们在珠海就可以监控到相关数据。”而事实上,除了珠海格力,作为格力集团生产出口基地的芜湖格力,大数据的运用也早已投入到生产运营的各个环节,今天我们就一起走进芜湖格力,感受一下大数据在智能制造领域发挥的价值。
格力电器(芜湖)有限公司(以下简称“芜湖格力”)在2012年筹备期间便开始了ERP(企业资源计划系统)、MES(制造企业生产过程执行系统)的实施之旅,相关数据展示平台都由IT部门自主研发,经过3年时间的数据累积,在数据分析环节使用过水晶报表等一系列分析平台,数据分析的过程需要由技术人员操作,流程复杂,时效性差,对业务支持有限。而面对业务流程中不断递增的分析需求,以及业务决策的效率要求,需要一款支持多源业务数据整合,敏捷操作以及可视化展现的大数据分析软件。BI平台不仅轻松满足了这些要求,且实施周期短,对TB级到PB级数据能做到秒级响应,大大提高了业务决策的效率和价值。
芜湖格力BI项目负责人生产计划部科长谢传辉介绍,为改进工厂制造的现状,IT部门引进了BI产品,希望通过平台对这些影响生产经济效率的潜在因素进行分析,达到以下目的:1、减少物流配送过程中纸质单据,节约公司成本;2、提高备料过程管控;3、降低生产异常核实处理的时间,提高工作效率;4、降低因物料配送问题导致的生产异常。
芜湖格力的信息化系统发展分为两个阶段:流程管控和数据采集。由于生产型企业本身涉及的流程繁多,在靠人力运维的时代,只能在电脑上用EXCEL表格进行监控,经过MES(制造企业生产过程执行系统)系统的全面实施,目前已经采集到物流配送过程中的库存数据、拣选备料数据、配送执行数据和分厂接收数据,还差点检数据未采集。第一步:实现PDA点检,实现物料点检信息化,完善采集订单齐套数据。第二步:通过采集的从订单下达到物料上线生产中间一系列的操作数据,搭建一整套的信息化BI系统,实现过程的实时监控和异常预警。
生产线监控
芜湖格力MES生产效率分析
之前很多物料的短缺,格力是靠人工去一一核实和查询,虽然系统有MRP(物料需求计划系统)在运行,但是数据量庞大而明细指标繁杂,业务人员进行具体数据分析时往往需要IT人员配合建模、计算等,一份报表的分析通常费时耗力。而现在,通过MES和MPR采集的系统数据,可连接BI平台进行实时的多维分析。例如,物料齐套检查这项工作,以前需要点对点针对相关人员进行排查,而现在检查的结果是在分析平台实时展现,指标体系更可以根据情况灵活调整,IT人员的工作效率提升了30%以上。
质量控制
之前对于现场的生产过程和质量管理都是人工将系统数据导入再利用EXCEL内置的图表处理进行简单的分析。通过与技术方的合作,芜湖格力开始结合更多的业务分析维度进行探索式分析和分析预测,借助大数据分析平台实现从产线、班组以及分厂多个维度各个层面来展示公司整体生产运营情况。
芜湖格力项目价值实现杠杆
另外,业务部门从最开始不知道能不能发挥价值到后来越来越多的尝试使用,再到现在已经认可了分析价值,还会根据实际应用场景提出分析改善意见。按照目前整个平台实施的情况来看,已经解放了40%左右的IT工作量,让IT人员能减少了大量的重复工作,更好的投入到更重要的工作,比如对平台的技术支持上来。现在能够用实时客观的数据去代替人工核验流程,实现业务运转的自动化,包括自动排产、自动效率分析、错误数据预警等。这些都有赖于数据分析平台的建立。
根据平台使用的深入,谢传辉介绍,对IT部门来说价值是非常明显的。就整体业务来说,下一步会讨论如何将分析平台与原有的大数据基础平台结合增强数据处理的闭环率以及数据运行效率。另外通过在业务环节增加传感器等方式进一步做好数据采集,扩大数据分析的应用范围。对芜湖格力来说,企业数据化运营和决策刚刚起步,系统化和标准化的原则还需要行业专家的进一步指导,能为提供更多业内最佳实践的参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29