京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS因子分析法-例子解释
因子分析的基本概念和步骤
一、因子分析的意义
在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:
?计算量的问题
由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。
?变量间的相关性问题
收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。
为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。
因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点:
?因子个数远远少于原有变量的个数
原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
?因子能够反映原有变量的绝大部分信息
因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
?因子之间的线性关系并不显著
由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。
?因子具有命名解释性
通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解
spss因子分析 SPSS因子分析法-例子解释
释性有助于对因子分析结果的解释评价,对因子的进一步应用有重要意义。例如,对高校科研情况的因子分析中,如果能够得到两个因子,其中一个因子是对科研人力投入、经费投入、立项项目数等变量的综合,而另一个是对结项项目数、发表论文数、获奖成果数等变量的综合,那么,该因子分析就是较为理想的。因为这两个因子均有命名可解释性,其中一个反映了科研投入方面的情况,可命名为科研投入因子,另一个反映了科研产出方面的情况,可命名为科研产出因子。
总之,因子分析是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、因子分析的基本概念
1、因子分析模型
因子分析模型中,假定每个原始变量由两部分组成:共同因子(common factors)和唯一因子(unique factors)。共同因子是各个原始变量所共有的因子,解释变量之间的相关关系。唯一因子顾名思义是每个原始变量所特有的因子,表示该变量不能被共同因子解释的部分。原始变量与因子分析时抽出的共同因子的相关关系用因子负荷(factor loadings)表示。 因子分析最常用的理论模式如下:
Zj?aj1F1?aj2F2?aj3F3?????ajmFm?Uj(j=1,2,3…,n,n为原始变量总数) 可以用矩阵的形式表示为Z?AF?U。其中F称为因子,由于它们出现在每个原始变量的线性表达式中(原始变量可以用Xj表示,这里模型中实际上是以F线性表示各个原始变量的标准化分数Zj),因此又称为公共因子。因子可理解为高维空间中互相垂直的m个坐标轴,A称为因子载荷矩阵,aji(j?1,2,3...n,i?1,2,3...m)称为因子载荷,是第j个原始变量在第i个因子上的负荷。如果把变量Zj看成m维因子空间中的一个向量,则
相当于多元线性回归模型中的标准化回归系数;U称为aji表示Zj在坐标轴Fi上的投影,
特殊因子,表示了原有变量不能被因子解释的部分,其均值为0,相当于多元线性回归模型中的残差。
其中,
(1)Zj为第j个变量的标准化分数;
(2)Fi(i=1,2,…,m)为共同因素;
(3)m为所有变量共同因素的数目;
(4)Uj为变量Zj的唯一因素;
(5)aji为因素负荷量。
2、因子分析数学模型中的几个相关概念
?因子载荷(因素负荷量factor loadings)
spss因子分析 SPSS因子分析法-例子解释
所谓的因子载荷就是因素结构中,原始变量与因素分析时抽取出共同因素的相关。可以证明,在因子不相关的前提下,因子载荷aji是变量Zj和因子Fi的相关系数,反映了变量Zj与因子Fi的相关程度。因子载荷aji值小于等于1,绝对值越接近1,表明因子Fi与变量Zj的相关性越强。同时,因子载荷aji也反映了因子Fi对解释变量Zj的重要作用和程度。因子载荷作为因子分析模型中的重要统计量,表明了原始变量和共同因子之间的相关关系。因素分析的理想情况,在于个别因素负荷量aji不是很大就是很小,这样每个变量才能与较少的共同因素产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则Uj彼此间或与共同因素间就不能有关联存在。一般说来,负荷量为0.3或更大被认为有意义。所以,当要判断一个因子的意义时,需要查看哪些变量的负荷达到了0.3或0.3以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22