支持向量机(SVM)理论总结系列.线性可分(附带R程序案例:用体重和心脏重量来预测一只猫的性别)
1.名词解释
支持向量机中的机:在机器学习领域,常把一些算法看做一个机器,如分类机(也叫作分类器)
2.问题描述
空间中有很多已知类别的点,现在想用一个面分开他们,并能对未知类别的点很好的识别类别。
3.算法思想
由问题描述可知,现在算法要解决两个问题:
找到一个平面,可以很好的区分不同类别的点,即使分类器的训练误差小,线性可分时要求训练误差为0。
很好的识别未知类别样本的类别,即多大程度上信任该分类器在未知样本上分类的效果。
令满足以上两点的超平面方程为:
图1 画图展示
4.公式推导
这里接着上一步,公式推导如何求w和b,下图2所示。
图2 公式推导
5.程序实现(案例)
案例介绍:用体重和心脏重量来预测一只猫的性别。
#数据集来自MASS包的cats数据集
#下面的程序将实现用体重和心脏重量来预测一只猫的性别
library(e1071)
data(cats,package="MASS")
summary(cats)
inputData=data.frame(cats[, c (2,3)], Sex= as.factor(cats$Sex))
train=inputData[1:108,]#训练集
test=inputData[109:144,]#测试集
#初步建模
x=train[,-3]
y=train[,3]
#核函数选择高斯核函数
model1=svm(x,y,kernel='radial',gamma=if(is.vector(x)) 1 else1/ncol(x))
#计算训练误差,结果显示有14个样本类别错误
z=test[,-3]
zy=test[,3]
zy=as.integer(zy)
pred1=predict(model1,x)
table(pred1,y)
#优化模型
attach(train)#将数据集train按列单独确认为向量
type=c("C-classification","nu-classification","one-classification")
kernel=c("linear","polynomial","radial","sigmoid")
pred2=array(0,dim=c(108,3,4))
accuracy=matrix(0,3,4)
yy=as.integer(y)
for(i in 1:3)
{
for(j in 1:4)
{
pred2[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),x)
if(i>2) accuracy[i,j]=sum(pred2[,i,j]!=1)
else accuracy[i,j]=sum(pred2[,i,j]!=yy)
}
}
#12种组合算法在训练集上的误差
wrong=matrix(0,3,4)
for(i in 1:3)
{
for(j in 1:4)
{
wrong[i,j]=mean(yy != pred2[,i,j])#错误率占比
}
}
#选择训练集上误差最小的三种组合,计算在测试集上的误差,三种组合在训练集上的错误率分别为0.241,0.259,0.278;三种组合分别是nu-classification+radial、C-classification+linear组合和C-classification+radial组合。
pred3=array(0,dim=c(108,3,4))
for(i in 1:3)
{
for(j in 1:4)
{
pred3[,i,j]=predict(svm(x,y,type=type[i],kernel=kernel[j]),z)
if(i>2) accuracy[i,j]=sum(pred3[,i,j]!=1)
else accuracy[i,j]=sum(pred3[,i,j]!=yy)
}
}
mean(zy != pred3[,2,3])
mean(zy != pred3[,1,1])
mean(zy != pred3[,1,3])
#计算结果分别为0.417,0,0数据分析师培训
#在测试集上错误率为0的两种算法分别是C-classification+linear组合和C-classification+radial组合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02