京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python上下文管理器
上下文管理器(context manager)是Python2.5开始支持的一种语法,用于规定某个对象的使用范围。一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存)。它的语法形式是with...as...
关闭文件
我们会进行这样的操作:打开文件,读写,关闭文件。程序员经常会忘记关闭文件。上下文管理器可以在不需要文件的时候,自动关闭文件。
下面我们看一下两段程序:
# without context manager
f = open("new.txt", "w")
print(f.closed) # whether the file is open
f.write("Hello World!")
f.close()
print(f.closed)
以及:
# with context manager
with open("new.txt", "w") as f:
print(f.closed)
f.write("Hello World!")
print(f.closed)
两段程序实际上执行的是相同的操作。我们的第二段程序就使用了上下文管理器 (with...as...)。上下文管理器有隶属于它的程序块。当隶属的程序块执行结束的时候(也就是不再缩进),上下文管理器自动关闭了文件 (我们通过f.closed来查询文件是否关闭)。我们相当于使用缩进规定了文件对象f的使用范围。
上面的上下文管理器基于f对象的__exit__()特殊方法(还记得我们如何利用特殊方法来实现各种语法?参看特殊方法与多范式)。当我们使用上下文管理器的语法时,我们实际上要求Python在进入程序块之前调用对象的__enter__()方法,在结束程序块的时候调用__exit__()方法。对于文件对象f来说,它定义了__enter__()和__exit__()方法(可以通过dir(f)看到)。在f的__exit__()方法中,有self.close()语句。所以在使用上下文管理器时,我们就不用明文关闭f文件了。
自定义
任何定义了__enter__()和__exit__()方法的对象都可以用于上下文管理器。文件对象f是内置对象,所以f自动带有这两个特殊方法,不需要自定义。
下面,我们自定义用于上下文管理器的对象,就是下面的myvow:
# customized object
class VOW(object):
def __init__(self, text):
self.text = text
def __enter__(self):
self.text = "I say: " + self.text # add prefix
return self # note: return an object
def __exit__(self,exc_type,exc_value,traceback):
self.text = self.text + "!" # add suffix
with VOW("I'm fine") as myvow:
print(myvow.text)
print(myvow.text)
我们的运行结果如下:
I say: I'm fine
I say: I'm fine!
我们可以看到,在进入上下文和离开上下文时,对象的text属性发生了改变(最初的text属性是"I'm fine")。
__enter__()返回一个对象。上下文管理器会使用这一对象作为as所指的变量,也就是myvow。在__enter__()中,我们为myvow.text增加了前缀 ("I say: ")。在__exit__()中,我们为myvow.text增加了后缀("!")。
注意: __exit__()中有四个参数。当程序块中出现异常(exception),__exit__()的参数中exc_type, exc_value, traceback用于描述异常。我们可以根据这三个参数进行相应的处理。如果正常运行结束,这三个参数都是None。在我们的程序中,我们并没有用到这一特性。数据分析师培训
总结:
通过上下文管理器,我们控制对象在程序不同区间的特性。上下文管理器(with EXPR as VAR)大致相当于如下流程:
# with EXPR as VAR:
VAR = EXPR
VAR = VAR.__enter__()
try:
BLOCK
finally:
VAR.__exit__()
由于上下文管理器带来的便利,它是一个值得使用的工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16