京公网安备 11010802034615号
经营许可证编号:京B2-20210330
算法与数据结构|查找
1.查找基本概念
分为静态查找和动态查找;静态查找时构造的存储结构成为静态查找表,动态查找时构造的存储结构为动态哈招标
2.静态查找表
静态查找表包括:顺序表、有序顺序表、索引顺序表三种结构。
2.1 顺序表
在顺序表上查找的基本思想是:从顺序表的一端开始,用给定数据元素的关键字逐个与顺序表中各数据元素的关键字比较,若存在,则查找成功;反之,则查找失败。
查找成功的平均查找长度ASL_成功=(1+n)/2;查找失败平均查找长度ASL_失败=n
2.2 有序顺序表
有序顺序表上的查找算法主要有顺序查找和二分查找方法
2.2.1 顺序查找
与之前的查找一样,但是由于是有序的因此在失败时平均查找长度与之前是有不同的:
ASL_成功=(n+1)/2;ASL_失败=(n+1)/2。
2.2.2 二分查找
基本思想:在一个查找区间,确定查找区间的中心位置,用待查找的元素的关键字与之对比,若相等则查找成功;否则,若若小于则把查找区间改为原区间的左部分;若大于则把查找区间改为原区间的右部分;这样查找一直到查找区间的上界小于下界为止。
2.3 索引顺序表
当顺序表的数据元素个数非常大时,无论使用哪种查找算法都需要很长的时间,此时,我们可以在顺序表上建立索引表。我们把在其上建立索引表的顺序表叫做主表,主表中存放数据元素的全部信息,索引表中只存放主表中要查找数据元素的主关键字和索引信息。
当数据元素个数非常庞大时,可以对索引表再做索引表,这样的索引表叫做耳机索引表或者多级索引表。
索引表还分为等长索引表、不等长索引表(多一个length域)(主表分段有序即可,要求比有序低)。
3.动态查找表
3.1 二叉排序树
二叉排序树:或者是一个空树或者具有以下性质:(1)若左子树不空,则左子树上所有节点的关键字值均小于根节点的关键字值;(2)若右子树不空,则右子树上所有节点的关键字均大于等于根节点的关键字值;
3.2 B_树
与二叉排序树相比,B_树是一种平衡多叉排序树。这里说的平衡是指所有叶节点都在同一层上,从而可避免出现像二叉排序树那样的分支退化现象;多叉指多余二叉,B_是一种动态查找效率高于二叉排序树的树。
B_树中所有节点的孩子节点的最大值成为B_树的阶通常用m表示。一棵m阶的B_树或者是一棵空树,或者是满足下列要求的m叉树:
1,树中每个节点最多有m个孩子节点
2,除根节点外,其他节点至少有[m/2](向上取整)个孩子节点
3,若根节点不是叶节点,则根节点至少有两个孩子节点。
4,每个节点的结构:
n表示该节点中关键字个数;Ki表示该节点的关键字且满足Ki<Ki+1;Pi为该节点的孩子节点指针且满足Pi指针所指及诶但的关键字均大于等于Ki小于Ki+1。Pn指针所指的关键字大于等于Kn
4.哈希表
哈希函数:把数据元素的关键字和该数据元素的存放位置之间的映射函数称为哈希函数;哈希表就是通过哈希函数确定数据元素存放位置的一种特殊结构。
哈希冲突,当数据元素关键字不相等,但是经过哈希函数映射的位置相同时,我们管这个叫做哈希冲突.哈希冲突主要与三个因素有关:a,装填因子(存入元素与哈希池地址空间壁纸;b,使用的哈希函数相关;c,与解决哈希冲突的冲突解决函数有关)
解决哈希冲突的方法,基本思想:当哈希冲突时,通过哈希函数产生一个新的哈希地址是不产生冲突,通常哈希函数是一组函数。
一旦构造好哈希表,只需要以关键字K和哈希函数来映射到地址,然后从地址中取出关键字元素对比是否相同,相同则查找成功,否则以建立哈希表时所用的冲突函数得到新的地址查看关键字是否相同,一直到查找成功或查找完成m次而未查找到。数据分析师培训
常用的哈希函数构造方法:1,除留余数法;2,直接定址法;3,数字分析法。
哈希冲突解决方法:1,开放定址法(线性探查法、平方探查法、伪随机数法);2,链表法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06