京公网安备 11010802034615号
经营许可证编号:京B2-20210330
算法与数据结构|查找
1.查找基本概念
分为静态查找和动态查找;静态查找时构造的存储结构成为静态查找表,动态查找时构造的存储结构为动态哈招标
2.静态查找表
静态查找表包括:顺序表、有序顺序表、索引顺序表三种结构。
2.1 顺序表
在顺序表上查找的基本思想是:从顺序表的一端开始,用给定数据元素的关键字逐个与顺序表中各数据元素的关键字比较,若存在,则查找成功;反之,则查找失败。
查找成功的平均查找长度ASL_成功=(1+n)/2;查找失败平均查找长度ASL_失败=n
2.2 有序顺序表
有序顺序表上的查找算法主要有顺序查找和二分查找方法
2.2.1 顺序查找
与之前的查找一样,但是由于是有序的因此在失败时平均查找长度与之前是有不同的:
ASL_成功=(n+1)/2;ASL_失败=(n+1)/2。
2.2.2 二分查找
基本思想:在一个查找区间,确定查找区间的中心位置,用待查找的元素的关键字与之对比,若相等则查找成功;否则,若若小于则把查找区间改为原区间的左部分;若大于则把查找区间改为原区间的右部分;这样查找一直到查找区间的上界小于下界为止。
2.3 索引顺序表
当顺序表的数据元素个数非常大时,无论使用哪种查找算法都需要很长的时间,此时,我们可以在顺序表上建立索引表。我们把在其上建立索引表的顺序表叫做主表,主表中存放数据元素的全部信息,索引表中只存放主表中要查找数据元素的主关键字和索引信息。
当数据元素个数非常庞大时,可以对索引表再做索引表,这样的索引表叫做耳机索引表或者多级索引表。
索引表还分为等长索引表、不等长索引表(多一个length域)(主表分段有序即可,要求比有序低)。
3.动态查找表
3.1 二叉排序树
二叉排序树:或者是一个空树或者具有以下性质:(1)若左子树不空,则左子树上所有节点的关键字值均小于根节点的关键字值;(2)若右子树不空,则右子树上所有节点的关键字均大于等于根节点的关键字值;
3.2 B_树
与二叉排序树相比,B_树是一种平衡多叉排序树。这里说的平衡是指所有叶节点都在同一层上,从而可避免出现像二叉排序树那样的分支退化现象;多叉指多余二叉,B_是一种动态查找效率高于二叉排序树的树。
B_树中所有节点的孩子节点的最大值成为B_树的阶通常用m表示。一棵m阶的B_树或者是一棵空树,或者是满足下列要求的m叉树:
1,树中每个节点最多有m个孩子节点
2,除根节点外,其他节点至少有[m/2](向上取整)个孩子节点
3,若根节点不是叶节点,则根节点至少有两个孩子节点。
4,每个节点的结构:
n表示该节点中关键字个数;Ki表示该节点的关键字且满足Ki<Ki+1;Pi为该节点的孩子节点指针且满足Pi指针所指及诶但的关键字均大于等于Ki小于Ki+1。Pn指针所指的关键字大于等于Kn
4.哈希表
哈希函数:把数据元素的关键字和该数据元素的存放位置之间的映射函数称为哈希函数;哈希表就是通过哈希函数确定数据元素存放位置的一种特殊结构。
哈希冲突,当数据元素关键字不相等,但是经过哈希函数映射的位置相同时,我们管这个叫做哈希冲突.哈希冲突主要与三个因素有关:a,装填因子(存入元素与哈希池地址空间壁纸;b,使用的哈希函数相关;c,与解决哈希冲突的冲突解决函数有关)
解决哈希冲突的方法,基本思想:当哈希冲突时,通过哈希函数产生一个新的哈希地址是不产生冲突,通常哈希函数是一组函数。
一旦构造好哈希表,只需要以关键字K和哈希函数来映射到地址,然后从地址中取出关键字元素对比是否相同,相同则查找成功,否则以建立哈希表时所用的冲突函数得到新的地址查看关键字是否相同,一直到查找成功或查找完成m次而未查找到。数据分析师培训
常用的哈希函数构造方法:1,除留余数法;2,直接定址法;3,数字分析法。
哈希冲突解决方法:1,开放定址法(线性探查法、平方探查法、伪随机数法);2,链表法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01