
企业怎样用大数据分析做精细化运营
企业对于数据的驾驭,从最基本的获取到整合、治理、探索、分析、行动,这种全能力的建立已经比以往任何时候更为重要。毕竟人口红利已经过去,精细化运营,用数据作为决策才是专业之选。当我们迈入数据时代的时候,企业在运营上相对应的也发生了改变,从最初的粗放式运营逐渐过渡到精细化运营。
企业为什么要用大数据分析做精细化运营?
随着互联网、媒体、用户、市场的变化,企业发现过去他们所做的粗狂式运营已经不能有效的提升效率和增加企业用户了,所以,一些企业开始找寻新的运营方式,比如逐渐转变为CPM(每千人成本)化的精细化经营,通过这样的运营来提升运营的效率,使企业广告投放效率尽可能的最大化。
从行业的角度看,数据分析是基于某种行业目的,有目的地进行收集、整理、加工和分析数据,提炼有价值信息的一个过程。再通过分析手段、方法和技巧对准备好的数据进行探索和分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。
企业怎样用大数据分析做精细化运营?
1.基于三方面:
(1)目标,数据分析的关键在于设立目标,专业上叫做“有针对性”;
(3)结果,数据分析最终要得出分析的结果,结果对目标解释的强弱,结果的应用效果如何。
2.大数据分析方法:
有了对数据的把握后,那数据的处理过程就很好理解了,主要包括:明确分析的目的和内容、数据收集、数据处理、数据分析、数据展现和报告撰写等六个步骤。
3.大数据分析的工具
确定整体框架,下一步需要整理数据分析工具,而专业的数据分析工具不仅仅要提供日常作为公司KPI考核的一些数据,更要提供公司横纵向多维度的数据,每个数据之间的联系。我们需要找出它每一个属性,这个属性的实体代表什么?后面的属性是什么?如果数据就放在硬盘里面,那数据也仅仅是数据,没有对数据属性的理解洞察和对算法能力的了解 ,那它上升不到Information的阶段。
4.大数据分析的多维度
公司日常主要关注的数据作为用公司KPI考核已成主流,例如:新增、留存、激活、渠道、GMV等。但这是否意味着其他数据都没必要看了呢?如果一个企业老板这样要求团队运营和看自己的数据,那你能想象这个运营团队是怎样使用他的数据,不会研究的很深!其实数据之间都是有关联性的,每一个维度的数据并不能很客观的探索出业务问题的最本质原因。选取主要的几个数据可以作为KPI考核,其他的数据应该重点作为KPI的分析数据。除了新增、留存、激活、渠道、GMV,我们还要看漏斗分析、用户群、渠道质量、访问序列、热点图等一切可以降低成本的数据。漏斗分析、用户群、渠道质量评估、访问序列、热点图等就是要填补企业对多维数据监控的缺失。
企业大数据分析的价值提现
从三个维度考核:
(1)了解用户渠道
(2)用户兴趣
(3)确定用户是老客户还是新客户
通过这三个维度的分析,企业可以更精准的决定自己的投放策略和方向,这完全是大数据给精细化运营带来的价值。
用户渠道能够帮助企业发现更多流量的来源以及更合理的分配渠道投放;
了解用户兴趣,通过用户对产品的点击、讨论的话题、转发的内容多方面多维度进行大数据分析,可以帮助企业有效找到用户喜欢的兴趣点和接受内容的方向,方便企业在运营内容和形式上及时作出调整。
最后,通过对用户观察分析,可以让企业做精准运营的时候掌握好用户的生命周期,以及针对不同用户投放不同内容,以及帮助企业找到激活老用户的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04