京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业怎样用大数据分析做精细化运营
企业对于数据的驾驭,从最基本的获取到整合、治理、探索、分析、行动,这种全能力的建立已经比以往任何时候更为重要。毕竟人口红利已经过去,精细化运营,用数据作为决策才是专业之选。当我们迈入数据时代的时候,企业在运营上相对应的也发生了改变,从最初的粗放式运营逐渐过渡到精细化运营。
企业为什么要用大数据分析做精细化运营?
随着互联网、媒体、用户、市场的变化,企业发现过去他们所做的粗狂式运营已经不能有效的提升效率和增加企业用户了,所以,一些企业开始找寻新的运营方式,比如逐渐转变为CPM(每千人成本)化的精细化经营,通过这样的运营来提升运营的效率,使企业广告投放效率尽可能的最大化。
从行业的角度看,数据分析是基于某种行业目的,有目的地进行收集、整理、加工和分析数据,提炼有价值信息的一个过程。再通过分析手段、方法和技巧对准备好的数据进行探索和分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。
企业怎样用大数据分析做精细化运营?
1.基于三方面:
(1)目标,数据分析的关键在于设立目标,专业上叫做“有针对性”;
(3)结果,数据分析最终要得出分析的结果,结果对目标解释的强弱,结果的应用效果如何。
2.大数据分析方法:
有了对数据的把握后,那数据的处理过程就很好理解了,主要包括:明确分析的目的和内容、数据收集、数据处理、数据分析、数据展现和报告撰写等六个步骤。
3.大数据分析的工具
确定整体框架,下一步需要整理数据分析工具,而专业的数据分析工具不仅仅要提供日常作为公司KPI考核的一些数据,更要提供公司横纵向多维度的数据,每个数据之间的联系。我们需要找出它每一个属性,这个属性的实体代表什么?后面的属性是什么?如果数据就放在硬盘里面,那数据也仅仅是数据,没有对数据属性的理解洞察和对算法能力的了解 ,那它上升不到Information的阶段。
4.大数据分析的多维度
公司日常主要关注的数据作为用公司KPI考核已成主流,例如:新增、留存、激活、渠道、GMV等。但这是否意味着其他数据都没必要看了呢?如果一个企业老板这样要求团队运营和看自己的数据,那你能想象这个运营团队是怎样使用他的数据,不会研究的很深!其实数据之间都是有关联性的,每一个维度的数据并不能很客观的探索出业务问题的最本质原因。选取主要的几个数据可以作为KPI考核,其他的数据应该重点作为KPI的分析数据。除了新增、留存、激活、渠道、GMV,我们还要看漏斗分析、用户群、渠道质量、访问序列、热点图等一切可以降低成本的数据。漏斗分析、用户群、渠道质量评估、访问序列、热点图等就是要填补企业对多维数据监控的缺失。
企业大数据分析的价值提现
从三个维度考核:
(1)了解用户渠道
(2)用户兴趣
(3)确定用户是老客户还是新客户
通过这三个维度的分析,企业可以更精准的决定自己的投放策略和方向,这完全是大数据给精细化运营带来的价值。
用户渠道能够帮助企业发现更多流量的来源以及更合理的分配渠道投放;
了解用户兴趣,通过用户对产品的点击、讨论的话题、转发的内容多方面多维度进行大数据分析,可以帮助企业有效找到用户喜欢的兴趣点和接受内容的方向,方便企业在运营内容和形式上及时作出调整。
最后,通过对用户观察分析,可以让企业做精准运营的时候掌握好用户的生命周期,以及针对不同用户投放不同内容,以及帮助企业找到激活老用户的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01