京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据市场持续升温,创业者需知道数据
在互联网及移动互联网时代,中国创业潮一直以来都风生水起,一大批移动互联网企业赴美上市。进入大数据时代,数据不仅为我们的生活工作带来了诸多便利,更是将创业热潮推向了历史高峰。
3月22日,由上海大数据联盟、上海大数据产业基地和华院数据联合主办、数据猿协办的“2017大数据人工智能产业发展与创新应用”论坛上,为挖掘优秀项目及人才,推动科技的创新应用,主办方正式启动了“中国大数据人工智能创新创业大赛”。
参赛团队不仅可以获得科技金融赛题提供的股市行情数据、数据库、舆情信息等数据资源,还会面临全新的赛题挑战,即国内首推K线技术面视觉分析及图文消息面市场影响评估赛题。同时,主办方还联合羽时资产特设2亿专项AI基金,寻找创业独角兽,锁定众多技术大咖,届时一定会吸引大量创新创业者参赛。
在这个“大众创业、万众创新”的时代,尽管创业是一件极具风险、成功率又极低的事情,却仍然吸引着众多年轻人前仆后继加入创业大军。可是还是有很多人都只是“为了创业而创业”。那么,拥有创业热情又不乏计算机技术的年轻人们,该如何找到大数据人工智能的创业入口?如何选对创业方向呢?在回答问题之前,创业者们不妨先来了解一下大数据产业的创投市场。
创业先看投资。创业者在进入任何一个新兴行业之时,都需要有勇气和远见,其“远见”就表现为要清楚知道市场中“钱”的走向,只有清楚投资人把钱投向了哪里,才有机会抓住产业风口,占据市场.
在此次论坛上,数据猿创始人牟蕾指出,2016年,创投圈的“资本寒冬”之声不绝于耳,时不时传出创业项目被否决的消息。投资机构变得更加谨慎,创业者融资周期不断延长。创投圈发生了什么?大数据行业的创业创新是否还有机会?又有多少机会?
对此,牟蕾对2012年-2016年大数据行业投融资情况进行了复盘。数据显示,在2014年,我国大数据市场规模为97亿元,2015、2016年间增长率均高于全球数值,预计2018年,我国大数据市场规模有望超过500亿。与此同时,大数据产业显现出正在向成熟期过渡的发展特点,数据分析、数据应用项目开始受到资本热捧。
具体而言,2012-2016五年间,大数据领域发生的投融资事件超过1600起,透露金额的有1300余起,总金额达1200多亿;其中A轮事件占比40.4%,天使轮38.2%,产业大部分项目处于发展期,部分成熟项目已进入PE阶段。其中,2016年,融资额同比增长率达189.7%,不过融资频次下降,单笔额度过亿,但产业向成熟期发展越发明显。
牟蕾强调,从细分领域投融资趋势看,五年来,数据应用产业内的相关融资事件发生了673起,被披露项目的总金额达483亿,其二级产业中广告营销类融资事件位居首位;而数据分析产业相关融资事件450起,总金额471亿,仅次数据应用产业,其二级产业中分析平台类融资事件占据榜首。从资金走向看,牟蕾还指出,被大资金追棒的项目不外乎两个方向:一是通用技术型项目,这种技术不分行业,比如与人工智能相关的机器学习等底层架构技术;二是行业间的跨界融合,尤其是传统产业与大数据人工智能技术的结合。
此外,记者了解到,此次论坛上启动的“中国大数据人工智能创新创业大赛”,将聚焦于智慧医疗和科技金融两大热门领域。这两大领域与牟蕾的大数据投融资趋势分析结果如出一辙——“目前,金融和人工智能是大数据应用最热的行业,医疗健康和互娱次之”。
如今,大数据产业的高速发展已经渗透到每个行业和职能领域,成为了重要的生产因素;人工智能也已经应用于语音识别、图像处理器、计算机视觉、机器人等多个领域,甚至击败了围棋九段李世石,一系列成绩的背后,都是海量数据的积累与学习。各行业人士对数据的挖掘与应用,预示着新一波创业浪潮即将到来。
此外,牟蕾还向现场嘉宾展示了2012-2016年大数据产业投融资TOP榜。其中,TOP5的投资机构平均投入金额均在30亿元以上;融资大事件的发生地冠、亚军之位是北京(747次)和上海(275次),除苏州、成都仅在2012年上榜之外,此后,深圳、广州和杭州融资愈加活跃。而众所周知,北上广深一直是创业者们的集中营,所以这些城市将一如既往是大数据产业创新的发源地。
创业者们,如果想要选择好的产业风口,创投分析则是对一个产业发展的前置预判。如果一个新兴产业中的很多应用度尚未大面积展开,那么这个行业真正的春天其实是将掌握在众多有“远见”的创业者手中!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27