京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据市场持续升温,创业者需知道数据
在互联网及移动互联网时代,中国创业潮一直以来都风生水起,一大批移动互联网企业赴美上市。进入大数据时代,数据不仅为我们的生活工作带来了诸多便利,更是将创业热潮推向了历史高峰。
3月22日,由上海大数据联盟、上海大数据产业基地和华院数据联合主办、数据猿协办的“2017大数据人工智能产业发展与创新应用”论坛上,为挖掘优秀项目及人才,推动科技的创新应用,主办方正式启动了“中国大数据人工智能创新创业大赛”。
参赛团队不仅可以获得科技金融赛题提供的股市行情数据、数据库、舆情信息等数据资源,还会面临全新的赛题挑战,即国内首推K线技术面视觉分析及图文消息面市场影响评估赛题。同时,主办方还联合羽时资产特设2亿专项AI基金,寻找创业独角兽,锁定众多技术大咖,届时一定会吸引大量创新创业者参赛。
在这个“大众创业、万众创新”的时代,尽管创业是一件极具风险、成功率又极低的事情,却仍然吸引着众多年轻人前仆后继加入创业大军。可是还是有很多人都只是“为了创业而创业”。那么,拥有创业热情又不乏计算机技术的年轻人们,该如何找到大数据人工智能的创业入口?如何选对创业方向呢?在回答问题之前,创业者们不妨先来了解一下大数据产业的创投市场。
创业先看投资。创业者在进入任何一个新兴行业之时,都需要有勇气和远见,其“远见”就表现为要清楚知道市场中“钱”的走向,只有清楚投资人把钱投向了哪里,才有机会抓住产业风口,占据市场.
在此次论坛上,数据猿创始人牟蕾指出,2016年,创投圈的“资本寒冬”之声不绝于耳,时不时传出创业项目被否决的消息。投资机构变得更加谨慎,创业者融资周期不断延长。创投圈发生了什么?大数据行业的创业创新是否还有机会?又有多少机会?
对此,牟蕾对2012年-2016年大数据行业投融资情况进行了复盘。数据显示,在2014年,我国大数据市场规模为97亿元,2015、2016年间增长率均高于全球数值,预计2018年,我国大数据市场规模有望超过500亿。与此同时,大数据产业显现出正在向成熟期过渡的发展特点,数据分析、数据应用项目开始受到资本热捧。
具体而言,2012-2016五年间,大数据领域发生的投融资事件超过1600起,透露金额的有1300余起,总金额达1200多亿;其中A轮事件占比40.4%,天使轮38.2%,产业大部分项目处于发展期,部分成熟项目已进入PE阶段。其中,2016年,融资额同比增长率达189.7%,不过融资频次下降,单笔额度过亿,但产业向成熟期发展越发明显。
牟蕾强调,从细分领域投融资趋势看,五年来,数据应用产业内的相关融资事件发生了673起,被披露项目的总金额达483亿,其二级产业中广告营销类融资事件位居首位;而数据分析产业相关融资事件450起,总金额471亿,仅次数据应用产业,其二级产业中分析平台类融资事件占据榜首。从资金走向看,牟蕾还指出,被大资金追棒的项目不外乎两个方向:一是通用技术型项目,这种技术不分行业,比如与人工智能相关的机器学习等底层架构技术;二是行业间的跨界融合,尤其是传统产业与大数据人工智能技术的结合。
此外,记者了解到,此次论坛上启动的“中国大数据人工智能创新创业大赛”,将聚焦于智慧医疗和科技金融两大热门领域。这两大领域与牟蕾的大数据投融资趋势分析结果如出一辙——“目前,金融和人工智能是大数据应用最热的行业,医疗健康和互娱次之”。
如今,大数据产业的高速发展已经渗透到每个行业和职能领域,成为了重要的生产因素;人工智能也已经应用于语音识别、图像处理器、计算机视觉、机器人等多个领域,甚至击败了围棋九段李世石,一系列成绩的背后,都是海量数据的积累与学习。各行业人士对数据的挖掘与应用,预示着新一波创业浪潮即将到来。
此外,牟蕾还向现场嘉宾展示了2012-2016年大数据产业投融资TOP榜。其中,TOP5的投资机构平均投入金额均在30亿元以上;融资大事件的发生地冠、亚军之位是北京(747次)和上海(275次),除苏州、成都仅在2012年上榜之外,此后,深圳、广州和杭州融资愈加活跃。而众所周知,北上广深一直是创业者们的集中营,所以这些城市将一如既往是大数据产业创新的发源地。
创业者们,如果想要选择好的产业风口,创投分析则是对一个产业发展的前置预判。如果一个新兴产业中的很多应用度尚未大面积展开,那么这个行业真正的春天其实是将掌握在众多有“远见”的创业者手中!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15