京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一场用R语言打造的商务图表视觉盛宴
之前已经模仿了挺多网络上流行的高难度商务图表案例,自觉功力有所小成,就想着趁热打铁,把那些剩余的还没有被挖掘出来了的商务图表案例全部补全。
本篇给出不等宽柱形图案例以及MEKKO(也称市场细分矩阵)图案例全部四张图的R语言代码,作为ggplot商务图表进阶道路上的一个小小一步。
因素需要构造自定义标度,这里需要scale包的支持
library(ggplot2)
library(scales)
构造不等宽柱形图的案例数据(本案例模仿对象是刘万祥老师的《Excel图表之道》,感谢老师在业界的无私奉献精神,给我后备爱或者留下了如此丰富的图表案例资源,这里再次向老师致敬!)。
mydata<-data.frame(Name=paste0("项目",1:5),Scale=c(35,30,20,10,5),ARPU=c(56,37,63,57,59))
因为本篇 所构造的不等宽柱形图、MEKKO矩阵图等都是建立在四边形(或者呈为矩阵)的基础图形之上的,即物理的二维空间中,四个点坐标可以定位出一个四边形,利用R语言的向量化操作,就可以同时操纵n组长度为4的向量,来批量生成矩形块,这里的核心技巧只是在数据源中准确的生成每一组向量(也即每一个矩形块的水平轴起点、终点、垂直轴的起点、终点)。
在ggplot系统中,生成矩形的图层函数是geom_rect()函数,内置四个参数:
xmin\xmax\ymin\ymax
不等宽柱形图:
#构造矩形X轴的起点(最小点)
mydata$xmin<-0
for (i in 2:5){
mydata$xmin[i]<-sum(mydata$Scale[1:i-1])
}
#构造矩形X轴的终点(最大点)
for (i in 1:5){
mydata$xmax[i]<-sum(mydata$Scale[1:i])
}
#构造数据标签的横坐标:
for (i in 1:5){
mydata$label[i]<-sum(mydata$Scale[1:i])-mydata$Scale[i]/2
}
定义字体:
windowsFonts(myFont = windowsFont("微软雅黑"))
运行ggplot函数:
ggplot(mydata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax=ARPU,fill=Name))+
scale_fill_manual(values=c("#54576B","#BD1F12","#E8BA11","#62962A","#9B56AF"))+
geom_text(aes(x=label,y=ARPU-3,label=ARPU),size=6,col="white",family="myFont")+
geom_text(aes(x=label,y=-2.5,label=Scale),size=4,col="black",family="myFont")+
geom_text(aes(x=label,y=-5.5,label=Name),size=4,col="black",family="myFont")+
annotate("text",x=16,y=70,label="不等宽柱形图",size=8,family="myFont")+
annotate("text",x=14,y=64,label="这是一幅很用心的图表",size=4,family="myFont")+
annotate("text",x=11,y=-9.8,label="Source:EasyCharts",size=4,family="myFont")+
ylim(-10,80)+
theme_nothing()
-----------------------------------------------------------------------------------------------------------
不等宽条形图:
该案例来自于本人小号数据小魔方,也曾在本平台转发过:
图表案例——全球创新国家1000强研发投入变动趋势
设置目录导入数据
mydata<-read.csv("barchart.csv",stringsAsFactors = FALSE)
names(mydata)[1:5]<-c("State","RD","Betw","Cumcost","class")
#构造矩形X轴的起点(最小点)
mydata$xmin<-0
for (i in 2:nrow(mydata)){
mydata$xmin[i]<-sum(mydata$RD[1:i-1])
}
#构造矩形X轴的终点(最大点)
for (i in 1:nrow(mydata)){
mydata$xmax[i]<-sum(mydata$RD[1:i])
}
#构造数据标签的横坐标:
for (i in 1:nrow(mydata)){
mydata$label[i]<-sum(mydata$RD[1:i])-mydata$RD[i]/2
}
mydata$class<-factor(mydata$class,levels=c("亚洲","欧洲","北美","其他地区")).
运行作图函数:
ggplot(mydata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=0,ymax=Betw,fill=class),col="white")+
coord_flip()+
scale_x_reverse()+
scale_y_continuous(limits=c(-.45,.7),breaks=seq(-.4,.7,.1),labels=percent_format(),position = "top")+
scale_fill_manual(values=c("#802428","#AB6661","#D1A6A1","#A89B94"))+
geom_text(aes(x=label,y=Betw/2,label=Betw),size=3,col="white",family="myFont")+
geom_text(aes(x=label,y=ifelse(Betw>0,Betw+.03,Betw-.033),label=mydata$RD),size=4,col="black",family="myFont")+
geom_text(aes(x=label,y=ifelse(Betw>0,-.07,.07),label=State),size=4,col="black",family="myFont")+
labs(title="不等宽柱形图",subtitle="这是一幅很用心的图表",caption="Source:EasyCharts",x="",y="")+
theme(
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
plot.background=element_blank(),
panel.background=element_blank(),
panel.grid=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
legend.position=c(0.9,0.2),
axis.line.x=element_line()
)
![]()
--------------------------------------------------------------------------------------------------------
MEKKO(也称市场细分矩阵)
该图表同样来源于刘老师的图表宝典——《Excel图表之道》
Mekko<-read.csv("Mekko.csv",stringsAsFactors = FALSE)
Mekko$Class<-factor(Mekko$Class,order=T)
#构造矩形(Obama)X轴的起点(最小点)
Mekko$xmin<-0
for (i in 2:nrow(Mekko)){
Mekko$xmin[i]<-sum(Mekko$percent[1:i-1])
}
#构造矩形(Obama)X轴的终点(最大点)
for (i in 1:nrow(Mekko)){
Mekko$xmax[i]<-sum(Mekko$percent[1:i])
}
#构造数据标签的横坐标:
for (i in 1:nrow(Mekko)){
Mekko$label[i]<-sum(Mekko$percent[1:i])-Mekko$percent[i]/2
}
这里我不想重复映射两次geom_rect()图层函数,所以从新整理了数据源,一定要记得ggplot的作图体系中使用因子变量进行分类作图的思想,这里完全可以用一个类别标量赋给fill属性,避免代码冗余。
mynewdata1<-Mekko[,c(1,6,7)];mynewdata1$ymin<-0;mynewdata1$ymax<-Mekko$Obama;mynewdata1$Type<-"Obama"
mynewdata2<-Mekko[,c(1,6,7)];mynewdata2$ymin<-Mekko$Obama+Mekko$m;mynewdata2$ymax<-Mekko$Obama+Mekko$m+Mekko$McCain;mynewdata2$Type<-"McCain"
mynewdata<-rbind(mynewdata1,mynewdata2)
mynewdata$Type<-factor(mynewdata$Type,levels=c("Obama","McCain"),order=T)
运行作图函数:
ggplot(mynewdata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,fill=Type),col="white")+
scale_fill_manual(values=c("#004C7F","#B70023"))+
scale_x_continuous(breaks=Mekko$label,labels=Mekko$Class)+
geom_text(data=Mekko,aes(x=label,y=.25,label=percent(Obama)),size=3.5,col="white",family="myFont")+
geom_text(data=Mekko,aes(x=label,y=.8,label=percent(McCain)),size=3.5,col="white",family="myFont")+
labs(title="MEKKO-市场细分矩阵图",subtitle="这是一幅用心良苦的图表",caption="Source:EasyCharts",x="",y="")+
theme(
plot.margin=unit(c(2,0,0.5,0),"lines"),
panel.spacing=unit(c(0,0,0,0),"lines"),
axis.text.x=element_text(angle=90,size=10),
panel.background=element_blank(),
axis.ticks=element_blank(),
axis.text.y=element_blank(),
legend.position=c(.78,1),
legend.direction="horizontal",
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
legend.title=element_blank()
)
![]()
---------------------------------------------------------------------------------------------------------
ggplot(mynewdata)+
geom_rect(aes(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax,fill=Type),col="white")+
coord_flip()+
scale_fill_manual(values=c("#004C7F","#B70023"))+
scale_x_continuous(breaks=Mekko$label,labels=Mekko$Class)+
geom_text(data=Mekko,aes(x=label,y=.25,label=percent(Obama)),size=3.5,col="white",family="myFont")+
geom_text(data=Mekko,aes(x=label,y=.8,label=percent(McCain)),size=3.5,col="white",family="myFont")+
labs(title="MEKKO-市场细分矩阵图",subtitle="这是一幅用心良苦的图表",caption="Source:EasyCharts",x="",y="")+
theme(
plot.margin=unit(c(0,0,0,0),"lines"),
panel.spacing=unit(c(0,0,0,0),"lines"),
axis.text.y=element_text(size=10),
panel.background=element_blank(),
axis.ticks=element_blank(),
axis.text.x=element_blank(),
legend.position=c(.78,1),
legend.direction="horizontal",
text=element_text(family="myFont"),
plot.title=element_text(size=18),
plot.subtitle=element_text(size=14),
plot.caption=element_text(size=10,hjust=0),
legend.title=element_blank()
)
![]()
因水平有限,代码写的比较糟糕,图表如有可改善的细节,还请的各位多多指点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21