
R语言建立回归分析,并利用VIF查看共线性问题的例子
使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归?
>>>> 答
## 查看longley的数据结构
str(longley)
## 'data.frame': 16 obs. of 7 variables:
## $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
## $ GNP : num 234 259 258 285 329 ...
## $ Unemployed : num 236 232 368 335 210 ...
## $ Armed.Forces: num 159 146 162 165 310 ...
## $ Population : num 108 109 110 111 112 ...
## $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
## $ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
longly数据集中有7个变量16个观测值,7个变量均属于数值型。
首先建立全量回归模型
lm1 <- lm(GNP.deflator ~ ., data = longley)
summary(lm1)
##
## Call:
## lm(formula = GNP.deflator ~ ., data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.009 -0.515 0.113 0.423 1.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2946.8564 5647.9766 0.52 0.614
## GNP 0.2635 0.1082 2.44 0.038 *
## Unemployed 0.0365 0.0302 1.21 0.258
## Armed.Forces 0.0112 0.0155 0.72 0.488
## Population -1.7370 0.6738 -2.58 0.030 *
## Year -1.4188 2.9446 -0.48 0.641
## Employed 0.2313 1.3039 0.18 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.19 on 9 degrees of freedom
## Multiple R-squared: 0.993, Adjusted R-squared: 0.988
## F-statistic: 203 on 6 and 9 DF, p-value: 4.43e-09
建立的模型结果是令人沮丧的,6个变量的显著性p值只有两个有一颗星,说明有些变量不适合用于建模。
看各自变量是否存在共线性问题。此处利用方差膨胀因子进行判断:方差膨胀因子VIF是指回归系数的估计量由于自变量共线性使得方差增加的一个相对度量。一般建议,如VIF>10,表明模型中有很强的共线性问题。
library(car)
vif(lm1, digits = 3)
## GNP Unemployed Armed.Forces Population Year
## 1214.57 83.96 12.16 230.91 2065.73
## Employed
## 220.42
从结果看,所有自变量的vif值均超过了10,其中GNP、Year更是高达四位数,存在严重的多种共线性。接下来,利用cor()函数查看各自变量间的相关系数。
plot(longley[, 2:7])
cor(longley[, 2:7])
## GNP Unemployed Armed.Forces Population Year Employed
## GNP 1.0000 0.6043 0.4464 0.9911 0.9953 0.9836
## Unemployed 0.6043 1.0000 -0.1774 0.6866 0.6683 0.5025
## Armed.Forces 0.4464 -0.1774 1.0000 0.3644 0.4172 0.4573
## Population 0.9911 0.6866 0.3644 1.0000 0.9940 0.9604
## Year 0.9953 0.6683 0.4172 0.9940 1.0000 0.9713
## Employed 0.9836 0.5025 0.4573 0.9604 0.9713 1.0000
从散点分布图和相关系数,均可以得知,自变量间存在严重共线性。
接下来利用step()函数进行变量的初步筛选。
lm1.step <- step(lm1, direction = "backward")
## Start: AIC=10.48
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year + Employed
##
## Df Sum of Sq RSS AIC
## - Employed 1 0.04 12.9 8.54
## - Year 1 0.33 13.2 8.89
## - Armed.Forces 1 0.74 13.6 9.39
## <none> 12.8 10.48
## - Unemployed 1 2.08 14.9 10.88
## - GNP 1 8.47 21.3 16.59
## - Population 1 9.48 22.3 17.33
##
## Step: AIC=8.54
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year
##
## Df Sum of Sq RSS AIC
## - Year 1 0.46 13.3 7.11
## <none> 12.9 8.54
## - Armed.Forces 1 1.79 14.7 8.62
## - Unemployed 1 5.74 18.6 12.43
## - GNP 1 9.40 22.3 15.30
## - Population 1 9.90 22.8 15.66
##
## Step: AIC=7.11
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population
##
## Df Sum of Sq RSS AIC
## - Armed.Forces 1 1.3 14.7 6.62
## <none> 13.4 7.11
## - Population 1 9.7 23.0 13.82
## - Unemployed 1 14.5 27.8 16.86
## - GNP 1 35.2 48.6 25.76
##
## Step: AIC=6.62
## GNP.deflator ~ GNP + Unemployed + Population
##
## Df Sum of Sq RSS AIC
## <none> 14.7 6.62
## - Unemployed 1 13.3 28.0 14.95
## - Population 1 13.3 28.0 14.95
## - GNP 1 48.6 63.2 27.99
根据AIC 赤池信息准则,模型最后选择Unemployed、Population、GNP三个因变量参与建模。
查看进行逐步回归后的模型效果
summary(lm1.step)
##
## Call:
## lm(formula = GNP.deflator ~ GNP + Unemployed + Population, data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.047 -0.682 0.196 0.696 1.435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.12959 48.97251 4.52 0.00071 ***
## GNP 0.22010 0.03493 6.30 3.9e-05 ***
## Unemployed 0.02246 0.00681 3.30 0.00634 **
## Population -1.80501 0.54692 -3.30 0.00634 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 12 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.989
## F-statistic: 472 on 3 and 12 DF, p-value: 1.03e-12
从各判定指标可以看出,模型的结果是可喜的。参与建模的三个变量和截图的均是显著的。Multiple R-squared高达0.992。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29