
R语言建立回归分析,并利用VIF查看共线性问题的例子
使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归?
>>>> 答
## 查看longley的数据结构
str(longley)
## 'data.frame': 16 obs. of 7 variables:
## $ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
## $ GNP : num 234 259 258 285 329 ...
## $ Unemployed : num 236 232 368 335 210 ...
## $ Armed.Forces: num 159 146 162 165 310 ...
## $ Population : num 108 109 110 111 112 ...
## $ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
## $ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
longly数据集中有7个变量16个观测值,7个变量均属于数值型。
首先建立全量回归模型
lm1 <- lm(GNP.deflator ~ ., data = longley)
summary(lm1)
##
## Call:
## lm(formula = GNP.deflator ~ ., data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.009 -0.515 0.113 0.423 1.550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2946.8564 5647.9766 0.52 0.614
## GNP 0.2635 0.1082 2.44 0.038 *
## Unemployed 0.0365 0.0302 1.21 0.258
## Armed.Forces 0.0112 0.0155 0.72 0.488
## Population -1.7370 0.6738 -2.58 0.030 *
## Year -1.4188 2.9446 -0.48 0.641
## Employed 0.2313 1.3039 0.18 0.863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.19 on 9 degrees of freedom
## Multiple R-squared: 0.993, Adjusted R-squared: 0.988
## F-statistic: 203 on 6 and 9 DF, p-value: 4.43e-09
建立的模型结果是令人沮丧的,6个变量的显著性p值只有两个有一颗星,说明有些变量不适合用于建模。
看各自变量是否存在共线性问题。此处利用方差膨胀因子进行判断:方差膨胀因子VIF是指回归系数的估计量由于自变量共线性使得方差增加的一个相对度量。一般建议,如VIF>10,表明模型中有很强的共线性问题。
library(car)
vif(lm1, digits = 3)
## GNP Unemployed Armed.Forces Population Year
## 1214.57 83.96 12.16 230.91 2065.73
## Employed
## 220.42
从结果看,所有自变量的vif值均超过了10,其中GNP、Year更是高达四位数,存在严重的多种共线性。接下来,利用cor()函数查看各自变量间的相关系数。
plot(longley[, 2:7])
cor(longley[, 2:7])
## GNP Unemployed Armed.Forces Population Year Employed
## GNP 1.0000 0.6043 0.4464 0.9911 0.9953 0.9836
## Unemployed 0.6043 1.0000 -0.1774 0.6866 0.6683 0.5025
## Armed.Forces 0.4464 -0.1774 1.0000 0.3644 0.4172 0.4573
## Population 0.9911 0.6866 0.3644 1.0000 0.9940 0.9604
## Year 0.9953 0.6683 0.4172 0.9940 1.0000 0.9713
## Employed 0.9836 0.5025 0.4573 0.9604 0.9713 1.0000
从散点分布图和相关系数,均可以得知,自变量间存在严重共线性。
接下来利用step()函数进行变量的初步筛选。
lm1.step <- step(lm1, direction = "backward")
## Start: AIC=10.48
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year + Employed
##
## Df Sum of Sq RSS AIC
## - Employed 1 0.04 12.9 8.54
## - Year 1 0.33 13.2 8.89
## - Armed.Forces 1 0.74 13.6 9.39
## <none> 12.8 10.48
## - Unemployed 1 2.08 14.9 10.88
## - GNP 1 8.47 21.3 16.59
## - Population 1 9.48 22.3 17.33
##
## Step: AIC=8.54
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population +
## Year
##
## Df Sum of Sq RSS AIC
## - Year 1 0.46 13.3 7.11
## <none> 12.9 8.54
## - Armed.Forces 1 1.79 14.7 8.62
## - Unemployed 1 5.74 18.6 12.43
## - GNP 1 9.40 22.3 15.30
## - Population 1 9.90 22.8 15.66
##
## Step: AIC=7.11
## GNP.deflator ~ GNP + Unemployed + Armed.Forces + Population
##
## Df Sum of Sq RSS AIC
## - Armed.Forces 1 1.3 14.7 6.62
## <none> 13.4 7.11
## - Population 1 9.7 23.0 13.82
## - Unemployed 1 14.5 27.8 16.86
## - GNP 1 35.2 48.6 25.76
##
## Step: AIC=6.62
## GNP.deflator ~ GNP + Unemployed + Population
##
## Df Sum of Sq RSS AIC
## <none> 14.7 6.62
## - Unemployed 1 13.3 28.0 14.95
## - Population 1 13.3 28.0 14.95
## - GNP 1 48.6 63.2 27.99
根据AIC 赤池信息准则,模型最后选择Unemployed、Population、GNP三个因变量参与建模。
查看进行逐步回归后的模型效果
summary(lm1.step)
##
## Call:
## lm(formula = GNP.deflator ~ GNP + Unemployed + Population, data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.047 -0.682 0.196 0.696 1.435
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.12959 48.97251 4.52 0.00071 ***
## GNP 0.22010 0.03493 6.30 3.9e-05 ***
## Unemployed 0.02246 0.00681 3.30 0.00634 **
## Population -1.80501 0.54692 -3.30 0.00634 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 12 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.989
## F-statistic: 472 on 3 and 12 DF, p-value: 1.03e-12
从各判定指标可以看出,模型的结果是可喜的。参与建模的三个变量和截图的均是显著的。Multiple R-squared高达0.992。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15