
制造业应该如何利用工业大数据创造价值
互联网发展到今天,大数据、云计算成为热词,但是究竟什么是大数据,和数据有什么区别,却鲜少有人了解。在制造业转型之时,大数据又是如何发挥它强大的作用,今天我们就来说说大数据的那些事。
何为大数据?
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。这样说定义或许很难理解,其实简单来说,大数据就是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易揭示的规律。
由此,我们可以看出,大数据有两个明显的特征:第一,数据的属性包括结构化、非结构化和半结构化;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。
了解了大数据的概念,我们就要知道大数据在哪些方面应用广泛。很多人认为对于企业营销来说,大数据能够起到很大的作用。但其实在制造业转型升级的今天,智能化制造也离不开大数据,但是到底要怎么利用大数据,制造企业要怎样正确看待大数据?这是我们要讨论的。
制造业+大数据=?
在工业4.0的概念提出后,智能化、物联网、大数据、云计算成为热点,这些都体现了制造业需要信息化的支持,新一轮的工业革命在智能化、信息化、数字化维度才能有所突破。因为,传统制造业并不是信息化非常发达的行业,这一点体现在多数制造业的流程传统而粗糙,即使有现代化的设备,整体的信息化方案也多半来自设备制造商。
因此,制造业亟需大数据来进行一场信息化的改革,大数据会为制造业带来深远的影响:
首先,大数据能够为制造业带来更精准、更先进的工艺,以及更优质的产品,以弥补制造业整体水平低下的现状。
第二,制造业作为大数据的源头,一旦被数字化后,制造生产过程中产生的数据都可以成为大数据的范畴,对日积月累的大数据进行分析研究,便可为下一步的生产制造提供可行的方法和措施。
第三,在信息化当道的今天,智能制造已经成为趋势,制造企业除了保持匠心精神外,升级转型必然要利用数字化、大数据、物联网等技术,工业机器人的应用一定是需要大数据作为支撑。在这个“风起云涌”、“变幻万千”的高速发展时代,竞争异常激烈,如果没有布局相关技术,淘汰是唯一的结局。
第四,有人说是互联网打垮了实体经济,现实却恰恰相反。如果没有互联网,没有大数据,很多传统制造业连转型的机会都没有。遭到淘汰的制造企业,无非是没有转型,或者转型失败,但不能因此就说互联网是“杀死”制造业的“元凶”。大数据代表了新的制造业产业革命,是产业转型的标志性技术和关键性技术,把大数据运用到最佳状态,传统制造业必会迎来新的台阶。
对此,国家也出台了相关政策法规,国务院印发《促进大数据发展行动纲要》,明确提出,推动大数据发展和应用,在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系,开启大众创业、万众创新的创新驱动新格局,培育高端智能、新兴繁荣的产业发展新生态。
大数据是一种思维变化,目前我们的制造业缺乏的就是一种创新性、逻辑性的思维能力。大数据能够为制造业提供全方位的服务,从产品设计到制造、从使用到维护、维修等售后服务阶段,产生的正向数据以及逆向数据,都将得到全面应用,智慧工厂离我们不远了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08