
SAS—基于熵的连续变量的离散化
今天介绍下整个程序逻辑及sas代码的详细介绍。
首先宏 %BinContVard调用了宏%CandSplits;然后宏%CandSplits又调用宏
%BestSplit、%GValue;最后通过宏%ApplyMap应用于数据集。
下表是%BinContVar的参数
%BinContVar(Dsin,IVVar,DVVar,MMax,Acc,DsVarMap)
参数
描述
DSin
输入数据集
IVVar
连续自变量
DVVar
二元因变量
MMax
设定的分组数量
Acc
最小分段的百分比规模
DsVarMap
包含映射规则的输出数据集
首先,将初始数据集等距分为10段,然后把这些段数看作名义变量,基于熵方差利用最优二元分类法找出最优分群。
宏%bincontvar的主要是作用是连续变量的最优分段,嵌套了%CandSplits,这个宏的作用是对分段后的数据集在进行分群,并选出最优分群;宏%CandSplits嵌套了%BestSplits和%GValue两个宏:宏%BestSplits是找出最优分群,宏%GValue计算熵方差。
/*连续变量的最优分段*/
/*
1.找出连续变量的最大最小值;
2.对连续变量进行等距分段,并把这些段数看成名义变量;
3.对2所分段数进行最优分群,直到所设置的分群数
*/
%macro BinContVar(DSin, IVVar, DVVar, MMax, Acc, DSVarMap);
%local VarMax VarMin;
proc sql noprint;
select min(&IVVar), max(&IVVar) into :VarMin, :VarMax from &DSin;
quit;
%local Mbins i MinBinSize;
%let Mbins=%sysfunc(int(%sysevalf(1.0/&Acc)));/*设置等距分段数*/
%let MinBinSize=%sysevalf((&VarMax-&VarMin)/&Mbins);/*每段的长度*/
/*定义每段后每段的最大最小值*/
%do i=1 %to %eval(&Mbins);
%local Lower_&i Upper_&i;
%let Upper_&i = %sysevalf(&VarMin + &i * &MinBinSize);
%let Lower_&i = %sysevalf(&VarMin + (&i-1)*&MinBinSize);
%end;
%let Lower_1 = %sysevalf(&VarMin-0.0001);
%let Upper_&Mbins=%sysevalf(&VarMax+0.0001);
/*对连续变量 income 进行等距分段*/
data Temp_DS;
set &DSin;
%do i=1 %to %eval(&Mbins-1);
if &IVVar>=&&Lower_&i and &IVVar < &&Upper_&i Then Bin=&i;
%end;
if &IVVar>=&&Lower_&Mbins and &IVVar <= &&Upper_&MBins Then Bin=&MBins;
run;
/*计算出等距分段的每段最值*/
data temp_blimits;
%do i=1 %to %Eval(&Mbins-1);
Bin_LowerLimit=&&Lower_&i;
Bin_UpperLimit=&&Upper_&i;
Bin=&i;
output;
%end;
Bin_LowerLimit=&&Lower_&Mbins;
Bin_UpperLimit=&&Upper_&Mbins;
Bin=&Mbins;
output;
run;
proc sort data=temp_blimits;
by Bin;
run;
/*找出每段分段对应的二元自变量每个类别的频数*/
proc freq data=Temp_DS noprint;
table Bin*&DVvar /out=Temp_cross;
table Bin /out=Temp_binTot;
run;
proc sort data=temp_cross;
by Bin;
run;
proc sort data= temp_BinTot;
by Bin;
run;
data temp_cont;
merge Temp_cross(rename=count=Ni2 )temp_BinTot(rename=Count=total) temp_BLimits ;/*Ni2:每个分段下对应类别的频数 total:每个分段下的总频数*/
by Bin;
Ni1=total-Ni2;
PDV1=bin;
label Ni2= total=;
if Ni1=0 then output;
else if &DVVar=1 then output;
drop percent &DVVar;
run;
data temp_contold;
set temp_cont;
run;
/*合并所有含有ni1、ni2 、total= 0 的分段*/
proc sql noprint;
%local mx;
%do i=1 %to &Mbins;
select count(*) into : mx from Temp_cont where Bin=&i;
%if (&mx>0) %then %do;
select Ni1, Ni2, total, bin_lowerlimit, bin_upperlimit into
:Ni1,:Ni2,:total, :bin_lower, :bin_upper
from temp_cont where Bin=&i;
%if (&i=&Mbins) %then %do;
select max(bin) into :i1 from temp_cont where Bin<&Mbins;
%end;
%else %do;
select min(bin) into :i1 from temp_cont where Bin>&i;
%end;
%if (&Ni1=0) or (&Ni2=0) or (&total=0) %then %do;
update temp_cont set
Ni1=Ni1+&Ni1 ,
Ni2=Ni2+&Ni2 ,
total=total+&Total
where bin=&i1;
%if (&i<&Mbins) %then %do;
update temp_cont set Bin_lowerlimit = &Bin_lower where bin=&i1;
%end;
%else %do;
update temp_cont set Bin_upperlimit = &Bin_upper where bin=&i1;
%end;
delete from temp_cont where bin=&i;
%end;
%end;
%end;
quit;
proc sort data=temp_cont;
by pdv1;
run;
%local m;
/*将所有类别定义为宏变量m*/
data temp_cont;
set temp_cont;
i=_N_;
Var=bin;
Bin=1;
call symput("m", compress(_N_));
run;
%local Nbins ;
%let Nbins=1;
%DO %WHILE (&Nbins <&MMax);
/*从所有候选分群中根据熵选择最优分群*/
%CandSplits(temp_cont, Temp_Splits);
Data Temp_Cont;
set Temp_Splits;
run;
%let NBins=%eval(&NBins+1);
%end;
data temp_Map1 ;
set temp_cont(Rename=Var=OldBin);
drop Ni2 PDV1 Ni1 i ;
run;
proc sort data=temp_Map1;
by Bin OldBin ;
run;
data temp_Map2;
retain LL 0 UL 0 BinTotal 0;
set temp_Map1;
by Bin OldBin;
Bintotal=BinTotal+Total;
if first.bin then do;
LL=Bin_LowerLimit;
BinTotal=Total;
End;
if last.bin then do;
UL=Bin_UpperLimit;
output;
end;
drop Bin_lowerLimit Bin_upperLimit Bin OldBin total;
run;数据分析师培训
proc sort data=temp_map2;
by LL;
run;
data &DSVarMap;
set temp_map2;
Bin=_N_;
run;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09