
通过IMPORT过程读取外部文件数据
通过IMPORT过程读取外部文件数据
除了可以通过DATA步读取外部文本文件数据外,SAS还提供了IMPORT过程,通过它可以从外部数据源读取数据并写入到SAS数据集中。而且,如果使用SAS/ACCESS to PC Files,IMPORT过程除了可以导入带分隔符的文件外,还可以读取PC文件中的外部数据,包括Microsoft Access数据库文件、Miscrosft Excel工作薄、Lotus 1-2-3文件、dBase文件、JMP文件、SPSS文件、Stata文件、Paradox等。SAS变量的定义根据输入记录确定。
在SAS窗口环境选择菜单文件=>导入数据可以打开导入窗口,通过导入向导可读取上述类型的数据。导入过程所生成的SAS语句也可以保存起来供以后使用。
对应于IMPORT过程和SAS窗口环境的IMPORT向导,SAS还提供了EXPORT过程和EXPORT向导(选择菜单文件=>导出数据),以便将SAS数据集中的数据导出到上述类型的文件。对此这里不做讲解,有兴趣的读者可以通过SAS帮助文档学习。
IMPORT过程的导入数据的基本形式如下:
PROC IMPORT
DATAFILE=文件名|文件引用 | DATATABLE=表名
DBMS=数据源标识符
OUT=数据集名称;
RUN;
在上述形式中:
DATAFILE=指定输入文件的完整路径和文件名,或文件引用。文件引用通常通过FILENAME语句指定。
下面给出了几个例子,分别讲解通过IMPORT过程导入CSV文件、Microsoft Excel工作薄和Microsoft Access数据库文件中的数据。
读取CSV文件
外部文件contact.csv的内容如下,文件第一行给出了各个数据行中数据值字段的名称,后面的各行则为对应的字段值。
Name,Age,Position,Marriage,Address
Greg William,42,Manager,Single,"14 Bridge St. San Francisco, CA"
Emily Cooker,33,Sales,Married,"42 Rue Marston"
Henry Cooper,,Office,Married,"52 Rue Marston Paris"
Jimmy Cruze,34,Manager,Single,"Box 100 Cary, NC"
使用IMPORT过程导入该文件的代码如下:
proc import out=saslib.contact
datafile="c:\sas\data\contact.csv"
dbms=csv replace;
getnames=yes;
datarow=2;
run;
proc print data=saslib.contact noobs;
run;
所生成的数据集为saslib逻辑库中的contact数据集,数据文件为c:\sas\data\contact.csv,选项DBMS=指定数据库类型为csv。其中文件扩展名可以省略,SAS会根据DBMS=选项指定的据库类型自行加上。
代码中还使用了REPLACE选项,表示当OUT=指定的数据集存在时覆盖该数据集。GETNAMES语句表示是否从该文件中的第一行读取变量值,默认为YES,表示读取。值为NO表示不读取,这时IMPORT过程会自动产生名为F1、F2、F3的变量等。
DATAROW=语句也会经常使用,用于指定IMPORT语句开始读数据的行号。默认情况下,当GETNAMES=NO时,DATAROW=1,当GETNAMES=NO时,DATAROW=2。该选项可用于跳过数据文件开始处的多行内容。
PRINT过程打印的数据集内容如图2.47所示。
图2.47 PRINT过程打印的数据集
读取 Microsoft Excel 工作薄
IMPORT过程可以导入Microsoft Excel工作薄中的数据。在Excel 2007中文件的工作薄pag的内容如图4.28所示。在该图中,共包含了A~E五列,第一行为字段名称,从第二行开始为数据值。
图2.48 工作薄pag的内容
下面使用IMPORT过程读入该工作薄的指定区域。
proc import out=saslib.contact
datafile="c:\sas\data\contact.xlsx"
dbms=xlsx replace;
range="pag$A1:E5"n;
run;
proc print data=saslib.contact noobs;
run;
IMPORT过程中可以使用RANGE=语句指定所导入的区域。在使用IMPORT过程处理工作薄的数据之前,可先通过Microsoft Excel的“名称管理器”定义要处理的数据的区域,在IMPORT过程中,使用RANGE=语句指定该数据区域的名称,或直接在RANGE=语句中指定数据区域。本例中为直接指定,区域为工作薄为pag的从A1到E5的矩形区域。PRINT过程打印的数据集的内容如图2.49所示。
图2.49
注意:
1) DBMS=XLSX可以处理Microsoft Excel 2007或Microsoft Excel 2010的工作薄。对于其他更早版本的Microsoft Excel生成的工作薄,需使用其他类型,例如XLS、EXCEL4、EXCEL5。
2) 还可使用EXCEL数据库类型EXELCS并通过SAS PC文件服务器来读取相应版本的Excel工作薄。
3) 也可以直接使用LIBNAME语句通过SAS/ACCESS EXCEL引擎来访问Excel工作薄。
具体请参考SAS帮助文档。
通过DBMS=XLS或DBMS=XLSX来读取Excel文件中的数据还有一个好处,即可以直接在UNIX环境下读取Excel工作薄中的数据,不需要访问PC文件服务器。
读取 Microsoft Access 数据库文件
Microsoft Access是一个桌面关系型数据库系统,通常使用Microsoft ACE引擎(.accdb文件格式)或Microsoft Jet引擎(.mdb文件格式)。在IMPORT过程中指定DBMS为ACCESS,SAS可以读取在Microsoft Access 97、Microsoft Access 2000、Microsoft Access 2003、Microsoft Access 2007和Microsoft Access 2010中的文件。例如:
proc import out=saslib.customer
datatable="customer"
dbms=access replace;
database="c:\sas\data\customer.accdb";
RUN;
在IMPORT过程中使用access数据库类型,实际使用的是SAS/ACCESS LIBNAME引擎。也可以直接使用LIBNAME语句通过SAS/ACCESS ACCESS引擎来访问Microsoft Access数据库文件。
DATATABLE=指定输入DBMS表名。数据源可以通过DATAFILE或DATATABLE指定。
DBMS=指定要导入的数据类型。SAS支持多种数据类型,例如CSV、TAB、ACCESS、XLSX、XLS、EXCEL、JMP、DTA、SPASS等。其中CSV、TAB表示要导入的数据文件分别由逗号和tab符号分隔、ACCESS表示使用LIBNAME语句的Miscrosoft Access 表、XLSX表示Micorsoft Excel 2007或2010的工作薄,等等。可参考SAS帮助文档关于导入数据类型和各类型的详细信息。
OUT=指定输出的数据集名称。该语句后面还可以添加数据集选项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08