京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过IMPORT过程读取外部文件数据
通过IMPORT过程读取外部文件数据
除了可以通过DATA步读取外部文本文件数据外,SAS还提供了IMPORT过程,通过它可以从外部数据源读取数据并写入到SAS数据集中。而且,如果使用SAS/ACCESS to PC Files,IMPORT过程除了可以导入带分隔符的文件外,还可以读取PC文件中的外部数据,包括Microsoft Access数据库文件、Miscrosft Excel工作薄、Lotus 1-2-3文件、dBase文件、JMP文件、SPSS文件、Stata文件、Paradox等。SAS变量的定义根据输入记录确定。
在SAS窗口环境选择菜单文件=>导入数据可以打开导入窗口,通过导入向导可读取上述类型的数据。导入过程所生成的SAS语句也可以保存起来供以后使用。
对应于IMPORT过程和SAS窗口环境的IMPORT向导,SAS还提供了EXPORT过程和EXPORT向导(选择菜单文件=>导出数据),以便将SAS数据集中的数据导出到上述类型的文件。对此这里不做讲解,有兴趣的读者可以通过SAS帮助文档学习。
IMPORT过程的导入数据的基本形式如下:
PROC IMPORT
DATAFILE=文件名|文件引用 | DATATABLE=表名
DBMS=数据源标识符
OUT=数据集名称;
RUN;
在上述形式中:
DATAFILE=指定输入文件的完整路径和文件名,或文件引用。文件引用通常通过FILENAME语句指定。
下面给出了几个例子,分别讲解通过IMPORT过程导入CSV文件、Microsoft Excel工作薄和Microsoft Access数据库文件中的数据。
读取CSV文件
外部文件contact.csv的内容如下,文件第一行给出了各个数据行中数据值字段的名称,后面的各行则为对应的字段值。
Name,Age,Position,Marriage,Address
Greg William,42,Manager,Single,"14 Bridge St. San Francisco, CA"
Emily Cooker,33,Sales,Married,"42 Rue Marston"
Henry Cooper,,Office,Married,"52 Rue Marston Paris"
Jimmy Cruze,34,Manager,Single,"Box 100 Cary, NC"
使用IMPORT过程导入该文件的代码如下:
proc import out=saslib.contact
datafile="c:\sas\data\contact.csv"
dbms=csv replace;
getnames=yes;
datarow=2;
run;
proc print data=saslib.contact noobs;
run;
所生成的数据集为saslib逻辑库中的contact数据集,数据文件为c:\sas\data\contact.csv,选项DBMS=指定数据库类型为csv。其中文件扩展名可以省略,SAS会根据DBMS=选项指定的据库类型自行加上。
代码中还使用了REPLACE选项,表示当OUT=指定的数据集存在时覆盖该数据集。GETNAMES语句表示是否从该文件中的第一行读取变量值,默认为YES,表示读取。值为NO表示不读取,这时IMPORT过程会自动产生名为F1、F2、F3的变量等。
DATAROW=语句也会经常使用,用于指定IMPORT语句开始读数据的行号。默认情况下,当GETNAMES=NO时,DATAROW=1,当GETNAMES=NO时,DATAROW=2。该选项可用于跳过数据文件开始处的多行内容。
PRINT过程打印的数据集内容如图2.47所示。
图2.47 PRINT过程打印的数据集
读取 Microsoft Excel 工作薄
IMPORT过程可以导入Microsoft Excel工作薄中的数据。在Excel 2007中文件的工作薄pag的内容如图4.28所示。在该图中,共包含了A~E五列,第一行为字段名称,从第二行开始为数据值。
图2.48 工作薄pag的内容
下面使用IMPORT过程读入该工作薄的指定区域。
proc import out=saslib.contact
datafile="c:\sas\data\contact.xlsx"
dbms=xlsx replace;
range="pag$A1:E5"n;
run;
proc print data=saslib.contact noobs;
run;
IMPORT过程中可以使用RANGE=语句指定所导入的区域。在使用IMPORT过程处理工作薄的数据之前,可先通过Microsoft Excel的“名称管理器”定义要处理的数据的区域,在IMPORT过程中,使用RANGE=语句指定该数据区域的名称,或直接在RANGE=语句中指定数据区域。本例中为直接指定,区域为工作薄为pag的从A1到E5的矩形区域。PRINT过程打印的数据集的内容如图2.49所示。
图2.49
注意:
1) DBMS=XLSX可以处理Microsoft Excel 2007或Microsoft Excel 2010的工作薄。对于其他更早版本的Microsoft Excel生成的工作薄,需使用其他类型,例如XLS、EXCEL4、EXCEL5。
2) 还可使用EXCEL数据库类型EXELCS并通过SAS PC文件服务器来读取相应版本的Excel工作薄。
3) 也可以直接使用LIBNAME语句通过SAS/ACCESS EXCEL引擎来访问Excel工作薄。
具体请参考SAS帮助文档。
通过DBMS=XLS或DBMS=XLSX来读取Excel文件中的数据还有一个好处,即可以直接在UNIX环境下读取Excel工作薄中的数据,不需要访问PC文件服务器。
读取 Microsoft Access 数据库文件
Microsoft Access是一个桌面关系型数据库系统,通常使用Microsoft ACE引擎(.accdb文件格式)或Microsoft Jet引擎(.mdb文件格式)。在IMPORT过程中指定DBMS为ACCESS,SAS可以读取在Microsoft Access 97、Microsoft Access 2000、Microsoft Access 2003、Microsoft Access 2007和Microsoft Access 2010中的文件。例如:
proc import out=saslib.customer
datatable="customer"
dbms=access replace;
database="c:\sas\data\customer.accdb";
RUN;
在IMPORT过程中使用access数据库类型,实际使用的是SAS/ACCESS LIBNAME引擎。也可以直接使用LIBNAME语句通过SAS/ACCESS ACCESS引擎来访问Microsoft Access数据库文件。
DATATABLE=指定输入DBMS表名。数据源可以通过DATAFILE或DATATABLE指定。
DBMS=指定要导入的数据类型。SAS支持多种数据类型,例如CSV、TAB、ACCESS、XLSX、XLS、EXCEL、JMP、DTA、SPASS等。其中CSV、TAB表示要导入的数据文件分别由逗号和tab符号分隔、ACCESS表示使用LIBNAME语句的Miscrosoft Access 表、XLSX表示Micorsoft Excel 2007或2010的工作薄,等等。可参考SAS帮助文档关于导入数据类型和各类型的详细信息。
OUT=指定输出的数据集名称。该语句后面还可以添加数据集选项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16