
大数据掀起第四次工业革命
“很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了。”——马云卸任演讲
大数据掀起第四次工业革命
我们知道:
第一次工业革命以煤炭为基础,蒸汽机和印刷术为标志,
第二次工业革命以石油为基础,内燃机和电信技术为标志,
第三次工业革命以核能基础,互联网技术为标志,
第四次工业革命以可再生能源为基础为标志。
空白处你会填上什么?欢迎大家讨论。但是目前可以预测的是,数据和内容作为互联网的核心,不论是传统行业还是新型行业,谁率先与互联网融合成功,能够从大数据的金矿中发现暗藏的规律,就能够抢占先机,成为技术改革的标志。
大数据不仅是一场技术革命,一场经济变革,也是一场国家治理的变革。大数据时代,互联网是政府施政的新平台。单纯依靠政府管理和保护数据的做法会使政府在面对大规模而复杂的数据时应接不暇、不堪重负。而通过电子政务系统,可以实现在线服务,做到权力运作有序、有效、“留痕”,促进政府与民众的沟通互联,提高政府应对各类事件和问题的智能化水平。“十三五”规划建议指出:“运用大数据技术,提高经济运行信息及时性和准确性。”
随着云计算、移动互联网等网络新技术的应用和发展与普及,社会信息化进程进入数据时代,海量数据的产生与流转成为常态。预计到2020年,全球数据使用量将达到约400亿TB,将涵盖经济社会发展各个领域,成为新的重要驱动力。大数据重新定义了各个大国博弈的空间。在大数据时代,世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺。未来国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力,数字主权将成为继边防、海防、空防之后另一个大国博弈的空间。大数据将改变国家治理架构和模式。在大数据时代,用大数据可以通过对海量、动态、高增长、多元化、多样化数据的高速处理,快速获得有价值信息,提高公共决策能力。
随着国家大数据战略的实施,大数据人才的缺口也将会进一步增加。在今年9月3日闭幕的中国大数据产业峰会上,清华大学计算机系教授武永卫透漏:未来3到5年,中国需要180万大数据人才,但目前只有约30万人。国际数据公司(IDC)预测,到2020年,企业基于计算分析平台的支出将突破5000亿美金。随着数据采集、数据存储、数据挖掘、数据分析等数据产业的发展,我国需要更多的数据人才。
近年来传统行业一直走下坡路,进而影响到的是高校学生的就业问题。与此形成鲜明对比的是,近年来高速发展的IT行业却依旧面临着“用工荒”的尴尬境地!!!
大数据是每个人的大数据,是每个企业的大数据,更是整个国家的大数据。而我们每个个体,作为数据的产生者,大数据时代拥抱大数据,“十三五”规划建议已经吹响向大数据进军的号角,随着国家大数据战略的实施,基于大数据的智慧生活、智慧企业、智慧城市、智慧政府、智慧国家必将一一实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14