京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑:
Youtube百万粉丝大V数据分析师Alex Freberg,20分钟讲清楚。

想要成为数据分析师,有些技能必不可少:

必备技能:SQL、Excel、Tableau/Power BI(数据可视化工具)。这些技能是数据分析师日常工作的基础,能帮助你高效处理和展示数据。
进阶技能:Python、AWS/Azure等云平台。虽然学习起来有一定难度,但随着职业发展,它们会为你提供更强大的数据处理和分析能力,且会在不断实践中逐渐熟练掌握。
简历是向HR展示自己的重要窗口,制作时需注意以下几点:

突出优势技能:将自己最擅长的技能在简历中重点呈现,比如如果SQL是你的强项,可在总结、技能、工作经历或作品集中多次提及。
精简内容:去除与数据分析师岗位无关的工作经历和技能。不过,如果过往工作积累了领域专业知识,且与目标岗位所在行业相关,比如医疗行业的数据分析岗位与护士工作背景,就可以保留。
保持专业:确保简历条理清晰、风格简洁,避免使用鲜艳颜色或附上大头照,以展现专业性。
项目能够直观地展示你的能力和工作成果,具体步骤如下:

确定项目数量:准备2-5个项目即可。
项目实施流程:先获取数据集(可从网页爬取,或在Kaggle、Google等平台获取);接着使用Python的pandas库或SQL对数据进行清洗和转换,并将处理后的数据放在SQL中生成视图,展示SQL能力;然后连接数据可视化工具,如Tableau或Power BI,进行可视化操作。
展示方式:将作品集发布在Github上,或建立个人网站,并在简历中附上链接,方便HR查看。
与猎头合作能增加获得面试机会的概率,具体方法如下:

利用LinkedIn:完善LinkedIn资料,表明自己正在寻找数据分析师或初级数据分析师的工作,吸引猎头主动联系你。
主动联系猎头:若不想被动等待,可通过电话或邮件主动联系猎头。建议打电话沟通,让猎头了解你的求职意向,以便在你发送简历后,他们能更好地匹配岗位。
积极合作:与猎头密切合作,借助他们的内部消息和合作渠道,获得更多面试机会。
面试是获得工作的关键一步,需做好以下准备:

技术问题准备:对于初级数据分析师,面试中的技术问题主要围绕SQL;随着经验积累,Python相关问题也会增多。提前复习和练习相关知识,做到心中有数。
常规问题准备:像“我最大的弱点是什么”这类常见问题,提前思考并写好答案,避免在面试中陷入被动。
外在表现:注意着装得体,保持自信。即使紧张,也要在面试过程中尽量展现出自信的态度。
在工作过程中,持续学习和提升技术能力是关键:

编程语言:学习Python或R,提升数据处理和分析的编程能力。
ETL工具:掌握ETL(抽取、转化、加载)技术,如SSIS、Azure Data Factory、AWS Glue等工具,用于高效处理数据。

回到学校进修:攻读与数据分析相关的硕士学位,如计算机科学、信息系统、统计、数据分析、数据科学等专业。这不仅能提升专业知识,还有助于长期职业发展。许多人选择在线学习硕士课程,边工作边学习,且部分公司还会支持员工进修并支付学费。
垂直发展,不断晋升:从初级数据分析师起步,逐步晋升为中级数据分析师、高级数据分析师、首席数据分析师、数据分析经理、数据分析总监等。每个阶段都需要积累更多经验,提升管理和决策能力。
职业转型:基于数据分析师与其他岗位在工具和技能上的重叠性,可转型为数据科学家、商业智能分析师、数据工程师、数据架构师、DBA(数据库管理员)、数据库开发员等。后续会详细介绍转型方法。
需要注意的是,进修深造和职业转型并不冲突,在学习的过程中,你可以同时尝试职业转型,或者借助学位获得更好的晋升机会,一步步实现自己的职业目标。
CDA数据分析师 出品 编译:Mika

如果你想进一步深入学习数据分析师相关知识,探索更多职业发展技巧,欢迎通过链接进入学习: https://edu.cda.cn/goods/show/2567?targetId=3647&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14