
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑:
Youtube百万粉丝大V数据分析师Alex Freberg,20分钟讲清楚。
想要成为数据分析师,有些技能必不可少:
必备技能:SQL、Excel、Tableau/Power BI(数据可视化工具)。这些技能是数据分析师日常工作的基础,能帮助你高效处理和展示数据。
进阶技能:Python、AWS/Azure等云平台。虽然学习起来有一定难度,但随着职业发展,它们会为你提供更强大的数据处理和分析能力,且会在不断实践中逐渐熟练掌握。
简历是向HR展示自己的重要窗口,制作时需注意以下几点:
突出优势技能:将自己最擅长的技能在简历中重点呈现,比如如果SQL是你的强项,可在总结、技能、工作经历或作品集中多次提及。
精简内容:去除与数据分析师岗位无关的工作经历和技能。不过,如果过往工作积累了领域专业知识,且与目标岗位所在行业相关,比如医疗行业的数据分析岗位与护士工作背景,就可以保留。
保持专业:确保简历条理清晰、风格简洁,避免使用鲜艳颜色或附上大头照,以展现专业性。
项目能够直观地展示你的能力和工作成果,具体步骤如下:
确定项目数量:准备2-5个项目即可。
项目实施流程:先获取数据集(可从网页爬取,或在Kaggle、Google等平台获取);接着使用Python的pandas库或SQL对数据进行清洗和转换,并将处理后的数据放在SQL中生成视图,展示SQL能力;然后连接数据可视化工具,如Tableau或Power BI,进行可视化操作。
展示方式:将作品集发布在Github上,或建立个人网站,并在简历中附上链接,方便HR查看。
与猎头合作能增加获得面试机会的概率,具体方法如下:
利用LinkedIn:完善LinkedIn资料,表明自己正在寻找数据分析师或初级数据分析师的工作,吸引猎头主动联系你。
主动联系猎头:若不想被动等待,可通过电话或邮件主动联系猎头。建议打电话沟通,让猎头了解你的求职意向,以便在你发送简历后,他们能更好地匹配岗位。
积极合作:与猎头密切合作,借助他们的内部消息和合作渠道,获得更多面试机会。
面试是获得工作的关键一步,需做好以下准备:
技术问题准备:对于初级数据分析师,面试中的技术问题主要围绕SQL;随着经验积累,Python相关问题也会增多。提前复习和练习相关知识,做到心中有数。
常规问题准备:像“我最大的弱点是什么”这类常见问题,提前思考并写好答案,避免在面试中陷入被动。
外在表现:注意着装得体,保持自信。即使紧张,也要在面试过程中尽量展现出自信的态度。
在工作过程中,持续学习和提升技术能力是关键:
编程语言:学习Python或R,提升数据处理和分析的编程能力。
ETL工具:掌握ETL(抽取、转化、加载)技术,如SSIS、Azure Data Factory、AWS Glue等工具,用于高效处理数据。
回到学校进修:攻读与数据分析相关的硕士学位,如计算机科学、信息系统、统计、数据分析、数据科学等专业。这不仅能提升专业知识,还有助于长期职业发展。许多人选择在线学习硕士课程,边工作边学习,且部分公司还会支持员工进修并支付学费。
垂直发展,不断晋升:从初级数据分析师起步,逐步晋升为中级数据分析师、高级数据分析师、首席数据分析师、数据分析经理、数据分析总监等。每个阶段都需要积累更多经验,提升管理和决策能力。
职业转型:基于数据分析师与其他岗位在工具和技能上的重叠性,可转型为数据科学家、商业智能分析师、数据工程师、数据架构师、DBA(数据库管理员)、数据库开发员等。后续会详细介绍转型方法。
需要注意的是,进修深造和职业转型并不冲突,在学习的过程中,你可以同时尝试职业转型,或者借助学位获得更好的晋升机会,一步步实现自己的职业目标。
CDA数据分析师 出品 编译:Mika
如果你想进一步深入学习数据分析师相关知识,探索更多职业发展技巧,欢迎通过链接进入学习: https://edu.cda.cn/goods/show/2567?targetId=3647&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18