京公网安备 11010802034615号
经营许可证编号:京B2-20210330
持证人简介:
CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有丰富的行业经验。
从理解“我们需要什么样的报表”,到掌握“基于业务的数据分析五步曲”,再到学会“Excel动态报表设计”的方法,我们距离用数据驱动决策又近了一步。
如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0

可视化报表是通过图表、图形等可视化元素,将抽象的数据信息呈现为直观、易理解的形式。
相较于传统的表格和文字报表,可视化报表更加生动、直观,能够更好地传达数据的趋势、关联和变化。它强调通过视觉感知,让用户能够更迅速、准确地理解复杂的数据关系。
可视化报表通过图表和图形的方式,更生动地展示数据的趋势和变化。相对于传统表格中冗长的数字,图表可以直观地描绘数据的波动、增长趋势等。
可视化报表工具通常支持交互性的操作,能够实现各个表之间的数据联动。这种交互性使得用户能够更深入地挖掘数据,发现隐藏在庞大数据集中的关联性和模式。

可视化报表通过图表和图形的形式,将复杂的数据关系以直观、生动的方式传递给用户。这有助于降低信息的认知难度,使得非专业人员也能够轻松理解数据。
可视化报表可以通过颜色、标签等方式强调异常点和关键数据。这使得用户在大量数据中更容易发现异常情况或关键趋势,而在传统表格中可能需要更多的时间和专业知识。
可视化报表使得比较和分析更为直观。通过将数据以图形的形式呈现,用户能够更容易比较不同时间段、不同类别的数据。
拥有好的报表工具和呈现形式是基础,但更核心的是科学的数据分析流程。如何确保我们的分析是围绕业务目标、解决实际问题的呢?这里介绍一个“基于业务的数据化分析五步曲”。

这是数据分析的起点和灵魂。首先要清晰地定义:我们要分析什么?解决什么业务问题?期望达到什么目标?明确分析的价值所在。例如,目标是提升销售额,问题可能是“哪个区域/产品的销售额下降了?原因是什么?”
明确问题后,需要确定从哪里获取相关数据(来源),需要哪些数据(范围),以及数据更新的频率(频率)。

获取原始数据后,往往需要进行清洗、整理和构建。这包括建立规范的“实体”数据表(例如产品表、客户表、订单表),定义表之间的关联(数据关系模型),并设计清晰的表结构。保证数据的准确性、一致性和可用性。
这是将数据转化为信息的关键步骤。需要根据分析目标,选择合适的数据分析模型(如对比分析、趋势分析、构成分析等),建立关键的数据分析指标(如销售额、增长率、利润率、用户活跃度等),并设定计算逻辑。

最后一步是将分析结果有效地呈现出来。通过动态化、可视化的报表,从多个角度展示数据分析结果,将复杂的分析过程和结论,以最“好看、好懂、好快”的方式传递给决策者,最终实现数据分析的商业价值。

这五个步骤环环相扣,强调从业务出发,到数据采集、处理、分析,最终回归业务价值呈现,形成一个闭环。
提到数据分析和报表制作,Excel 是绕不开的神器。很多人以为Excel只能做静态报表,其实,它完全有能力构建出色的动态报表!主要有以下几种常用方法:

这是Excel中最常用也相对简单的动态报表构建方式。通过透视表快速汇总、聚合数据,再结合切片器(和日程表)作为交互控件,用户只需点击切片器按钮,就能轻松筛选不同维度(如时间、区域、产品类别等),报表和图表会随之动态更新。
这种方法更灵活,自由度更高。我们可以利用Excel强大的函数体系(如 VLOOKUP, SUMIFS, INDEX, OFFSET, INDIRECT 等查找引用和计算函数),结合表单控件(如下拉框、复选框、滚动条、选项按钮等)来创建交互界面。用户通过操作控件选择条件,函数根据控件返回的值动态提取和计算数据,从而驱动报表更新。

无论使用哪种方法,设计动态报表时,通常也遵循 三层结构 的思路:

业务闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,CDA一级考察业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。

如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17