
SPSS因子分析变量数据还需要标准化处理吗
SPSS因子分析变量数据还需要标准化处理吗? SPSS答疑群的读者最近提出这样一个问题。
我的第一反应是挤出三个字来回答:不需要!
我猜测提问的人听到这三个字,心里会“咯噔”一下,哦,原来不需要标准化。可是过不了多久又开始怀疑,这么多变量,单位不同,量纲不同,为什么不标准化呢?
要回答这个问题,可能需要引用很多本教程,而问题可能恰恰就起源于这些教程和课本。很多初学者发现,不同的书的因子分析内容对这个问题要么避而不谈,要么观点截而不同。
说到这里,我也开始没有底气回答这个问题了。
首先我想说,在学习SPSS统计分析时,你有任何的疑问都应该被提出来,而不是藏着掖着,为什么呢?SPSS终究是工具,过度依赖工具将使我们丧失思考,最终导致统计方法滥用,多提问,有助于你站在统计思维上运用SPSS工具,选择最恰当的方法比完全依赖工具更重要!
我相信一点,能出版教程的作者,在内容撰写时,每一个、每一行文字都是深思熟虑过的,我们读书的时候持疑问态度是可以的,但最后要形成自己的判断,这个最重要。
关于这个问题,我的理解如下:
一、SPSS默认选项 的理由
SPSS执行因子分析过程时,在【分析】选项参数中,模型选定【相关性矩阵】,以分析变量的相关矩阵作为提取公因子的依据,为什么不是默认选定【协方差矩阵】?SPSS背后的专家团队充分考虑到用户的体验,从第一步选入原始变量,到默认选定【相关性矩阵】,不同层级的用户,尤其是初学者,使用默认步骤和选项得到的结果,比随意选择和设定参数得到的结果更可靠些。
既然如此,我们为什么不接受开发团队的善意呢?
二、因子分析输出结果的理由
SPSS因子分析默认流程得到输出的结果之一,因子得分是标准化的,可以理解为在默认选择使用【相关性矩阵】来研究公因子的过程中,SPSS对变量自动进行了数据标准化处理。
三、因子分析原理的理由
因子分析最大的适用基础是什么?是相关,它是建立在相关性基础上的多元分析方法。使用【相关矩阵】或【协方差矩阵】在建模时具体运算不同,用SPSS做因子分析建模时,一般认为,如果使用【协方差矩阵】需要考虑对变量进行适当的标准化处理,使用SPSS默认的【相关性矩阵】不需要标准化处理,软件会自动考虑处理。
☞ 必须说明,以上三项理由,都是基于SPSS软件因子分析建模,单独讲因子分析模型或其他软件时,请慎重参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01