京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中因子分析的步骤是怎样的
因子分析定义
因子分析是研究从变量群中提取共性影子的统计技术,是将现实生活中多种相关和重叠的信息进行合作和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标的一种分析方法。通常是选出比原始变量个数少,能解释原来变量和综合指标的一种分析方法。通常是选出比原始变量个数筛,能解释原来变量的主要信息,以便浓缩数据的变量,即所谓的因子,可以用以解释资料的综合指标。
因子分析法的特点
1.因子变量的数量远少于原有的指标变量的数量,多音字变量的分析能减少分析中的计算工作量;
2.因子变量不是对原有便利的取舍,而是根据原始变量的信息进行重新组构,它能反映原有变量大部分的信息;
3.因子变量之间不存在线性相关关系,对变量的分析比较方便;
4.因子变量具有命名解释性,即该变量是对某些原始变量信息的综合反映。
SPSS中的因子分析步骤
因子分析过程是对一个案例进行的最简单分析,虽然不能得到较满意的结果,但通过初步分析可以对研究的问题有一个初步的认识,对进一步的数据分析有很大的帮助。这里主要介绍SPSS因子分析的3个重要步骤:
1.因子提取:通过分析原始变量之间的相互关系,从中提交较少的因子。提取方法是利用选择本数据得到因子负荷矩阵。求解因子负荷矩阵的方法有很多,如主轴因子法等。使用因子负荷矩阵求解变量相关的矩阵的特征值,根据特征值的大小确定数量。
2.因子旋转:因子分析中的一个重要目的是对原始数据进行综合评价。利用因子提取方法得到的结果虽然保证了因子之间的不相关,但因子对变量的解释能力较弱,不容易解释和命名。通过因子模型的旋转变化,使公共因子的负荷和数更接近于1或0、使得到的公共因子对变量的命名和解释更加容易。进行正交换可以保证变换后各因子仍正交,但如果经过正交交换后对公共因子仍不能解释,可以进行斜交旋转变换。
3.计算因子得分:使用因子表示原始变量,需要知道因子和原始变量之间的线性关系。计算因子得分的主要方法有回归法、巴特利特法和Anderson-Rubin法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27