京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用SPSS做联合分析
如果产品的描述是由几个属性特征决定的,比如说mp3的音质、外形、容量、价格等等,商家为了确定哪个属性对消费者的影响最大,以及预测什么样的属性组合最受消费者的欢迎,选择的办法应该就是联合分析了。事实上从抽样调查的角度来看,高质量和低价格的组合是消费者的最爱,但是这对商家而言,这没有任何意义。
在SPSS中分成三个阶段,转载一个例子,帮助自己学习。
(1)ORTHOPLAN(正交设计),属性特征的所有组合产品是非常多的,所以应该通过正交设计进行筛选。以下是使用SPSS进行正交设计的程序及得出的一个正交设计方案:
*正交设计.
ORTHOPLAN
/FACTORS=price '价格'( 1 '1000元' 2 '1500元' 3 '2000元') capacity '容量' ( 1 '64M' 2 '128M' 3 '256M') tonality '音质' ( 1 '差' 2 '一般' 3 '好') fashion '外形' ( 1 '守旧' 2 '一般' 3 '时尚')
/OUTFILE='D:tempmp3plan.sav'.
以上程序在SPSS中也可通过窗口实现,执行该SPSS程序,
data->orthogonal design->generate
得出正交设计的结果,如下表:
MP3产品 价格 容量 音质 外形
A 2000 128M 好 守旧
B 2000 256M 差 一般
C 1500 64M 好 一般
D 1500 256M 一般 守旧
E 1500 128M 差 时尚
F 1000 256M 好 时尚
G 1000 64M 差 守旧
H 2000 64M 一般 时尚
I 1000 128M 一般 一般
(2)PLANCARD(生成模拟产品的卡片)
对于上面正交设计产生的9个种模拟产品,被调查者需要对每一个模拟产品的偏好进行评价,在实际调查过程中是将每个模拟产品的属性特征打印在一张卡片上,使用SPSS 语句可以一次性生成所有模拟产品的卡片,提高了制作卡片的效率。下面是生成模拟产品卡片的SPSS程序。
*生成模拟产品的卡片.
GET FILE='D:tempmp3plan.sav'.
PLANCARDS
/FACTOR=price capacity tonality fashion
/FORMAT card
/PAGINATE
/OUTFILE='d:tempcards.txt'.
执行上述程序输出所有模拟产品的卡片,
design->disdata->orthogonal play
以下只例出模拟产品ABCD的卡片输出结果
模拟产品A 模拟产品B 模拟产品C 模拟产品D
价格 2000元
容量 128M
音质 好
外形 守旧 价格 2000元
容量 256M
音质 差
外形 一般 价格 1500元
容量 64M
音质 好
外形 一般 价格 1500元
容量 256M
音质 一般
外形 守旧
在调查问卷中可设置相关的问题进行数据收集,下面是一个问题的例子。
〖出示模拟产品A的卡片〗请问您有多大可能会购买具有以下产品特征的MP3?(请以1-9为评分标准:"一定会"9分; "一定不会"1分) 【单选】
一定不会 一定会
购买可能性 1 2 3 4 5 6 7 8 9
假定通过调查得到某个消费者对9种模拟产品的评价,数据如下:
模拟产品的编号 A B C D E F G H I
购买的可能性 5 1 3 4 3 9 1 4 8
(3)CONJOINT
CONJOINT阶段只能自己编程序实现,似乎没有菜单操作可用。
conjoint plan=设计数据文件名[即(1)步产生的]。
/data=结果数据文件名[即(2)步产生,排序后得到的]。
/属性变量测试方式=相应变量列表
/subject=个体ID号
/factors=需要分析的属性变量列表
/print=需要输出的结果列表
/utility=存储数据文件名
/plot=需要绘制的图
采用SPSS中的Conjoint过程进行分析,其分析程序如下:
*输入收集的数据.
DATA LIST FREE / ID score1 to score9.
BEGIN DATA
1 5 1 3 4 3 9 1 4 8
END DATA.
SAVE OUTFILE='d:tempmp3data.sav'.
*进行结合分析.
CONJOINT
PLAN='d:tempmp3plan.sav'
/DATA='d:tempmp3data.sav'
/FACTORS=price capacity tonality fashion
/SUBJECT=id
/SCORE=score1 to score9
/PLOT=all
/UTIL='d:tempmp3result.sav'.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01