
3种SPSS综合评价方法对比,帮你理解主成分分析
评价一个主体的指标越多,我们就多一个角度去考察它,但是指标多了之后也会有另外一个麻烦,就是如何综合使用它们来评价主体呢?
排名是生活中常见的事情,但一般情况下我们只知道最终的排名结果和排名参考指标,具体的排名算法我们并不清楚,今天我们将通过SPSS软件对排名问题进行研究,以探讨其潜在的逻辑!
首先导入我们得到的源数据,数据中包含排名、高校名称以及6个供参考的指标数值。有一点我们可以确定,那就是这个最终排名一定是从6个指标中得出的,那具体的算法是什么呢,我们将慢慢探讨。
方法一:简单加法排名
加法排名的特点是取长补短,和我们高考一样,我们高考的最终排名,就是通过加法排名算法得出的,此算法的基本特点就是取长补短,不同指标的数值是等价的。根据加法算法的思想,我们将6个指标的数值进行相加,生成新的总值,并对总值做降序排名,得到如下结果:
我们惊讶地发现,通过加法排名得到的最终结果和实际结果一模一样!
方法二:个案排秩加法排名
除了将各个指标的得分相加排名外,我们还可以对各个指标分别排名,然后将各个指标的排名相加,得到个案排秩相加排名。
打开“转换”—“个案排秩”,将我们要进行排名的六个指标选进“变量”中,然后设置最大值为1,点击确定,就可以得到六个新生成的变量,这六个新变量就是六个指标的排名,将其排名相加得最终排名,如下:
我们发现,个案排秩加法得到的结果和实际结果基本一致,除了18、42和119等异常值外,其余的排名符合实际排名,这说明个案排秩也非常接近实际排名。
方法三:主成份分析排名
但我们并不局限于这两种加法排名——简单加法排名和个案排秩加法排名。我们还想进一步探究排名背后的元素,即我们想做这样一个猜想:有不能把这六个排名指标给压缩成较少数的指标,并通过这几个指标来窥测排名的背后逻辑。
我们通过主成份分析,来分析这六个指标由哪几个主成份构成。
“分析”—“降维”—“因子分析”,将我们需要的六个变量拖拽到“变量”框中,然后其它保持默认【保持默认即不旋转,是主成份分析;如果进行旋转,则为因子分析】,点击确定,得到如下图:
1、下图表示了主成份对原来六个指标的抽取情况。Initial(初始值)都是1.000,Extraction(抽取)表示着抽取的百分比,我们发现主成份对六个指标的抽取情况比较不错,基本都在0.9以上。
2、第二步,我们看抽取出来的主成份解释(Explained)了原来六个指标的百分之多少。我们发现,两个主成份,即代表了总体的0.94,因此我们最终得到两个主成份。
3、那么,这两个主成份是哪两个因素呢。下图为我们展示了主成份矩阵(Component Matrix)。我们发现Component1基本上包含了前五个指标;Component2包含了第六个指标。我们给这两个主成份命名为:自然科学和社会科学。
通过之前的设置,我们能够得到两个主成份的得分,即不同学校在不同主成份(即在自然科学和社会科学)上的得分,如下:
我们发现,排名越高的学校,其两个主成份的得分都比较靠前。但由于目测水平有限,我们实在看不出有什么更深入的东西。因为我们做一个散点图,来查看不同学校在两个维度(社会科学和自然科学)上的分布情况。
“图形”—“图形构建程序”。在图表类型中,我们不用“简单散点图”,而是选择“分组散点图”。将左侧的可选变量中的两个主成份得分变量拖进画布中,使之充当X轴和Y轴。此外,我们还想把不同学校的名称加进去,以充当标签。
在“组/点ID”中,将设置Id标签前的复选框勾选上,不选择分组变量。然后把“高校”这一变量拖到画面的标签中,点击确定。
点击确定,我们得到如下的一张图。横轴代表的是“社会科学维度”,纵轴代表的是“自然科学维度”。我们发现不同的高校分布在不同的区域上,但具体的分布情况是怎样的呢,我们加入C轴垂直线和Y轴垂线。
添加两条垂直线后,我们发现清华大学在“自然科学维度”上一骑绝尘,其次是浙江大学,北京大学和南京 大学;而在“社会科学维度”上,中国人民大学排名第一。这样,我们就通过分组散点图的形式,更深入地了解了此次排名背后的逻辑!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29