京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何改变大商业
彼得兰卡教授在以下的问答中,探讨了在公司策略的制定和实施、公司文化的建立和营销等环节如何应用大数据。
问:您在协助制定企业战略领域拥有丰富的专业经验。可以谈谈在该领域是如何利用大数据的吗?
企业战略包括确定公司发展方向、确保整个组织向此方向前进,以及制定相应的目标。数据的作用是可以帮助确保实际的工作确实能够发挥作用。公司内部可以提供很多数据,但现在对这些数据的利用并不充分。如果询问企业,什么是成功——具体地说,哪些指标可以表明公司取得成功,如何衡量每一个方面——那么许多公司都无法回答这个问题。实施战略,跟踪落实情况,对五年计划进行逐年调查,了解进度是否符合需要,必要时进行修正——上述各项都需要用到数据。
要有效地实施策略,首先需要知道员工是否拥有必要的实施工具。虽然长期以来,人力资源一直是一个定性性质更强的领域,但现在,我们有能力定量地回答这些类型的问题。例如,我们可以确定培训方案是否确实有效,是否某些类型的员工对这些方案响应更强烈,以及我们需要的日常变化是否正在进行。无论是在运营、人力资源,还是市场分析,我们都看到一个巨大的潜力,即进行数据分析,帮助组织机构以前所未有的方式进行战略制定和协调。从许多方面来说,战略是最有潜力以变革性的方式利用数据的领域。
问:战略是大方向,那么从实施层面上看呢?
为了帮助我们深刻理解企业的运作方式,大家可以了解一下法医取证的过程,这个过程从头至尾都是分析。取证的过程要求从微观入手,确保战略不会遭到任何破坏。分析的方法大致分为两种:过程分析和欺诈检测。
过程分析会深入了解过程应该具有的内容,包括如何进行精确衡量,从而确定风险敞口的位置和改善过程的方式。要处于这个领域的前沿,就需要将对人类行为的理解和对实际情况的定量理解结合起来,与认为会发生的情况相比较。能够通过公司的运营数据了解到更深层次的模式,即可获得这种定量洞察力。
至于欺诈,基本上是一场猫和老鼠的游戏。财务报表欺诈会使利益相关者损失惨重。拥有深刻的定量理解,才能够理清报告的内容,并与公司内部实际发生的情况相比较。除此之外,我们正在做到可以利用整家公司的数据来识别组织内各个层面上存在的欺诈。例如,我们现在可以访问的数据包括人们登录到公司网络的时间以及他们呼叫的对象。如果看到对某个供应商进行了大量电话呼叫,而且呼叫持续时间或时机似乎不合常理,就需要警惕了。利用大数据识别欺诈最令人激动的方面之一是情况总是在变化。一旦弄清楚如何分辨一种形式的欺诈,就会有新的欺诈形式出现。
问:您是说,大数据还可以用来建立公司文化?
正是如此。你要衡量的是正在做的事情。这可以像跟踪通过公司网络使用Facebook的时间那样简单。信息本身就可以开始把员工推往不同的方向。你还可以了解公司内部是否存在种族主义或性别歧视问题,以及公司内是否建立起包容文化。你可以找出有效的干预措施,以你希望的方式让员工变得更好。大多数这些事情都是可以衡量的。我们开始看到公司通过数据,更具体地获悉所面临的关键文化挑战。
问:金融业利用数据来跟踪各项投资由来已久。那么,这个行业存在哪些分析挑战呢?
至少目前来说,金融业独有的一个特征是海量的可用数据。在该领域工作,意味着要知道如何处理如此之多的数据。如果不知道实际上可以利用数据来处理哪些事情,也不知道可以利用哪些算法, 那么很快就会变得不知所措。金融业正在面临的挑战是寻找掌握最新技术的人。
问:营销领域面临的挑战似乎是寻找可用数据的最佳使用方法。
数字营销和分析的前景尚未完全实现。大多数人都知道这些技术,例如根据人们的搜索内容提供专门的推荐。但拥有数据与真正思考数据的含义及确定如何使数据变得可操作之间存在着差距。企业正在把一切数据都塞入到自身拥有的工具里,但又很少考虑可以如何利用数据来实际运营业务。在一些情况下,分析将大有裨益;而在另一些情况下,分析则徒劳无益。
而人们发现,连如何判断分析数据是否有用这个基本的问题,目前可能都无从解答。
问:这是否意味着当数据实际上提供的信息不完整时,公司只是因为拥有这些数据而据其做出决策,是有风险的?
并不是数据越多就越好。数据本身是没有意义的。我们已经看到在某些领域,数据规模过度庞大。公司希望利用分析,但需要知道为何要利用分析。关键是要确保从数据中获得的发现是可以操作的。如果你无法直接利用数据,那么数据毫无用处,因为你需要花费金钱获取数据,雇用人员分析数据。不仅如此,如果人们获得对他们而言不重要的数据,那么当终于有好的数据出现时,人们会忽略它。我们经常发现数据分析师们可以进行数据科学研究,但他们并不知道要回答的那些问题是什么。你希望的是由企业中了解数据用处,并且了解所需回答的问题的人来推进数据分析。这就是变革开始显现的时候。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15