
用好大数据,不惟大数据
面对渐行渐劲的大数据,如何做到科学运用,成为一道充满挑战但也颇具魅力的命题。
大数据者,全量数据也,“量大”是其核心。大数据正在深刻改变人们对世界的认知方式,言其要者有三:
一则,海量数据中,有的模糊有的精确,有的可计量能计算有的则不然,但这些都不影响“全量数据”的本质。因其全故能成其事——人们不必再像以往那样,非要挖空心思觅参数、定算法、建模型,以便完成“由部分推测全部”的艰苦过程,因为所有数据都已了然于胸,随手可拈。
二则,大数据时代里,你我他的一言一行都可能登簿入册。当“信息孤岛”加速消失、举手投足皆有记录,你会发现,以往的浑水摸鱼越来越难,“透明人”、“讲规矩”、“守信用”的舞台却越发宽广。对监管者、服务者和市场主体而言,透明可视、效率极高的大数据,是一次全新考试。
三则,大数据带来了需求与供给对接方式的变化,这一点,或许最具方向性和决定性意义。有些表现为“减少盲目,精准对接”,打车软件和网上就医是这方面的代表。有些表现为“告别落后,与时俱进”。比如,在简政放权过程中,过去以现场为主的服务方式、以抽查为主的监管方式,早已无法适应大数据时代需要和人民群众诉求。这时,“互联网+”、大数据便大有可为。
大数据优点多多,但有时却被其他因素紧紧捂在身下,不得施展。因此,我们要努力创造条件,让大数据充分涌流并真正发挥作用。
以大数据运用比较深入的足球领域为例,中国女足之所以能在今年世界杯上时隔多年再进八强,大数据起了关键作用——它使女足训练计量化、清晰化,为教练组提供了非常有价值的参考。然而,队内专门请来的数据分析师也坦言,我们与德国等大数据“领军者”根本没法比。新华社记者采访时发现,目前女足训练时,只有一少半球员能穿上数据采集背心。为什么?100多万元的装备太贵且属于政府采购,年度预算控制很严,所以不能马上落实。
大数据“无所不包”,却未必万能——在其初试啼音的当下,清醒务实的态度尤为重要。
清醒务实,意味着再海量的数据也不可能“无所不包”。辩证唯物主义基本原理表明,世界及其规律是人们可以认知的,但又是永远认知不完的。对海量数据,不能为其所累,而要主动驾驭,为我所用。主动与被动的辩证法,在大数据时代不但没有消退,反而愈加重要。
清醒务实,意味着再海量的数据也不可能“包打天下”。纵观人类社会发展史,技术、制度和道德理念,是3个不可或缺又不能互相替代的社会要素。换句话讲,仅有技术进步,还远远不够。
具体到大数据这件事上,我们注意到,6月17日召开的国务院第95次常务会议,审议通过了《关于运用大数据加强对市场主体服务和监管的若干意见》。国家发展改革委负责人在解读该《意见》时,特地强调了制度建设——事前信用承诺制度、产品信息溯源制度、网络经营者身份标识制度……
不过,在运用大数据构建以信用为核心的新型市场监管机制过程中,道德理念的作用会更加凸显。再高级的技术也难免存在缺陷,再严密的机制也难言禁绝漏洞。因此,加快形成褒扬诚信的正面导向,使更多市场主体自觉践行诚信、主动抵制失信,并让诚实守信者更多受益,才是管根本管长远的好办法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16