
大数据如何创造业务价值
大数据驱动的客户关系管理
京东作为中国最大的B2C电商,积累了海量的高质量客户数据,结合当前AI的热潮,让京东的未来充满了想象力。那么,大数据的价值到底在哪里?只是统计指标、生成报表支持业务决策吗?和大数据相关的机器学习和算法就是用复杂的数学模型来将某些指标数据算的更准吗?大数据的应用是不是就是提升转化率?大数据对业务的价值和作用在哪里?
1 企业经营面临的挑战
让我们从一个企业的最终表现——财务报表出发,剖析企业业务发展面临的挑战和待解决的问题,从而引出大数据和机器学习的机遇、挑战及其中所蕴藏着的巨大价值。
企业的财务报表,会给出公司在前一阶段经营中的各项指标和重要举措;财报的发布,会极大的影响一个企业的估值。其中的几个关键指标,充分说明了企业经营面临的挑战和业务关注的重点。
现金流量
现金流量是第一个指标,展示了企业经营的健康程度。现金流为正,说明企业经营状况健康,有大量现金盈余。现金盈余是由企业的快速销售回款和GMV增长所带来的。
利润率
其次是利润率,也就是毛利。说明了企业日常经营是否赚钱。同样的行业里,利润率基本一致。
周转率
准确来说是高周转率,是企业尤其是零售企业盈利和获胜的关键。周转率与毛利相乘,得到企业总体的运营利润水平。周转率越高,毛利就会越高。周转率的高低受两个能力影响,企业的库存周转的能力,以及销售的速度。
销售速度
销售速度,即销售额的速度,同样受多个因素的影响,一是活跃客户数,一般称为客流量,二是转化率,即销售漏斗的逐层转化。企业会投入大量资源进行广告营销,以提高活跃客户数量,吸引客流量,实现销售额的快速增长。
企业通过不断加大营销的投入和力度,不断发展新用户的数量,不断提升客流量。活跃用户数的快速增长,就产生了销售额的快速增长。
2 营销极限
产生活跃客户的方法,主要是通过各种渠道的营销活动。各种营销活动的策划和资源的投入是企业日常经营的重点。包括策划各种促销活动,各种优惠措施,在线或离线的各种广告。
为了销售额不断增长,企业的营销活动会越来越频繁。这种营销活动提升活跃用户是有边界的,即你的目标用户的全体,尤其是有购买能力的人群。通过吸引新客户来保持快速增长,会逐渐达到一个极限;因此在市场成熟后,企业还是要回到老客户的经营和活跃度的提升上。
促销活动数量和强度的不断增长,会不断消耗客户的注意力。客户会收到越来越多的促销信息,并逐渐变得对促销信息不再有敏感;即使优惠力度越来越大,客户的购买欲望却越来越低;甚至不胜打扰,屏蔽营销信息。结果,营销活动的转化率不断降低,效果越来越差,活跃客户数却不再有明显增长。到了这种程度,就可以称其为过度营销。
3大数据和机器学习
企业的增长,最终是要从外生性的扩张逐渐转变为内生性增长的。精细化的客户经营,需要大数据的支撑,需要机器学习和人工智能的实现,需要对客户的需求和满意度做精准的建模和把握。
当前的企业都会利用大数据,建立客户的需求偏好模型、点击率预估模型、优惠促销响应模型、客户流失预警模型等一系列客户模型。这些模型,在客户价值管理的某些具体应用点上,发挥了重要作用,提升了当期的转化率。
但是,要实现客户价值最大化,还需要从整个公司的视角,充分利用大数据,将目标从短期和具体应用点上的价值最大化,切换为长期的、全局的客户价值的最大化,实现客户和企业的双赢。
4客户资源价值最大化
如果我们将客户看作一种资源,这种资源的使用是有代价的,其恢复也是有一定周期的。过度频繁使用客户资源来做营销,会导致资源的枯竭。客户的购买需求和对营销信息的注意力质量会不断下降,直至最终耗竭。从而产生客户流失。
作为公司共同资源的客户群,如果没有合理的使用规则,就会产生经济学中的“公地悲剧”效应。即大家都无节制的使用公共资源,从而导致客户资源的耗竭。
解决这种问题,需要进行客户资源成本化,并从总体上合理规划客户资源的使用,实现客户价值的全局最大化。这需要通过大数据和机器学习,用全局最优的分配算法来代替局部的业务规则决策,实现客户服务的精细化。
可以在大数据和机器学习的支撑下,实现以下优化:
准确评估客户对公司的粘性和满意度,计算营销投入产出比时考虑客户资源的损耗,以客户价值最大的视角来展开客户营销。
对客户资源进行精细化经营,通过大数据和机器学习实现对个体客户需求的深层次把握,实现客户与商品的最佳匹配,降低客户注意力资源的浪费。
对客户进行全生命周期价值估计,从只关注和优化短期转化率,转变为关注客户长期价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29