京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据职位体系梳理
大数据时代,给个人带来了新的发展机会,也给个人提供了新的职位发展通道。一些同仁从其他岗位转向大数据岗位时,面对众多的大数据招聘职位时,却不知所措,不知道应该选择什么样的职位发展方向。
以下收集并整理了一下各个公司的招聘职位,试图梳理当前大数据岗位体系,并寻找出一条合适的职位发展通道,希望对大家有用。
大数据职位体系
当前大数据职位,从总的来说,主要有两大类:一类是应用类,另一类是系统类。
应用类
应用类,偏向于数据分析和数据应用,经常说到的数据分析、数据挖掘,就是典型的应用技术。这一类职位,要求采用适当的分析和挖掘方法对数据进行分析,提取数据中隐含的业务信息,来支撑企业决策。
最典型的职位就是:大数据分析师。
▊大数据分析师:主要是指,基于业务问题,能够选择最合适的数据分析和数据挖掘方法,提取数据中的业务信息,从而支撑业务决策。要求熟悉数据分析/挖掘过程,掌握数据分析/挖掘方法,理解数据分析模型,熟练操作数据分析工具(比如Excel、SPSS、SAS等)。一般对于大数据分析师,其能力要求比较全面,不管是业务逻辑、还是分析方法、模型、可视化,都要求全面掌握。
▊业务数据分析师:侧重于商业理解,要求能够将业务问题和商业问题,转化为大数据的问题,并将分析结果从业务层面进行解读,从而形成业务建议和业务策略。要求熟悉业务逻辑和业务模型,掌握数据分析思路,能将数据可视化,对数据解读等。当然,类似的职位还有大数据观察员、大数据研究员等等,这些都侧重于商业理解。
▊大数据建模/算法师:侧重于数据建模,能够围绕业务问题,构建合适的数据分析框架和分析模型,将业务问题进行分解,从而达到定性或定量来描述业务的目的。要求熟悉数据建模、模型评估、模型优化、模型应用等等。
▊大数据算法师:侧重于数据模型的实现算法研究、设计与实现,为达到分析目的,对实现算法进行分析、选择与优化,确保实现性能及效果。一般情况下,算法师往往和建模师在一起工作。
系统类
系统类,偏向于系统研发,比如hadoop系统、云计算,就属于系统类技术。这一类职位,要求熟悉Hadoop大数据平台的核心框架和组件,能够基于大数据平台来写代码开发应用,支撑业务应用。
最典型的职位就是:大数据工程师。
▊大数据开发工程师:负责大数据系统的开发工作,能够运用编程语言进行应用程序的开发、测试和维护,实现产品功能。要求掌握编程语言,如JAVA、R、Python等等。
▊大数据架构师:负责大数据系统的平台架构设计、平台构建。要求熟悉Hadoop/Storm/Spark等平台,熟悉整个生态系统的组件,有平台级开发和架构设计能力等等。
▊大数据运维工程师:侧重于大数据平台运维管理,包括系统运维规划、系统监控、系统优化等等,保障大数据平台服务的稳定性和可用性。掌握平台各组件的安装、配置与调试,有良好的系统性能优化及故障排除能力。
▊大数据库管理员:侧重于数据库/数据倒仓库的设计、开发、管理和优化,监控数据库的性能、故障检测和排除,包括数据采集,数据库架构设计,空间和容量规划,性能优化,数据安全和隐私,数据容错,等等。
当然,在不同的企业中,职位的名称和叫法有所不同,或者会衍生出新的职位,但基本的岗位职责是类似的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15