
来自CDA考试中心的通知!
亲爱的考生:
诚挚地向您通告,我们即将在 2023 年 10 月 31 日实施 CDA 认证考试的重大更新。这是为保持认证考试的内容与实际行业需求、最新技术及其发展同步而进行的必要步骤, 使 CDA 认证更具有前瞻性、实用性以及严谨性。
这次更新将涉及考试大纲的修改以及考试题目的全新设计,新的题目将更加强调对于应用能力的测试,更加注重考查各位考生在实际工作中所能应用的技能。
我们建议所有的考生尽早开始准备新的考试大纲,这将有助于你们在考试中取得更好的成绩。
Level I 考纲主要更新内容如下【点击查看】:
1. 增加趋势分析法的相关内容
2. 增加指标体系的相关内容,主要关注指标的设计和应用
3. 增加数据管理的相关内容,主要关注数据标准和数据质量的管理
4. 降低了数据结构和业务数据分析的考察占比
5. 调高了数据安全和数据立法等内容的考察占比
6. 业务分析方法做了部分更新,并更名为数据分析方法
Level II 考纲主要更新内容如下【点击查看】:
1. 增加数据治理的内容
2. 增加指标体系的内容
3. 调整各部分的得分占比
4. 标签体系与用户画像的内容调整到和教材一致
5. 更新数据分析模型的部分内容
6. 更新统计分析的部分内容
本次更新后,Level II 考试内容将与教材内容一一对应,推荐各位考生以教材为核心复习资料。
Level III 考纲主要更新内容如下【点击查看】:
1. 增加 LightGBM 等集成算法内容
2. 增加 Pipeline 内容
3. 增加随机参数搜索和贝叶斯搜索等调参内容
4. 增加深度学习的优化算法,正则化,自编码器与表示学习等内容
5. 增加 Transformer 架构的内容
6. 增加大语言模型的架构,使用,微调,Agent 等内容
7. 降低了概论,数据处理与特征工程,文本分析,机器学习基础算法等内容的占比
8. 删除了朴素贝叶斯等过时算法,删除了自动机器学习的部分内容
9. 部分文本分析,特征转换,SVM,序列模式等内容的考察要求降为领会
本次 Level III 更新将在2023年10月1日正式实施,新的考纲和新的题目将会同时启用。
请各位考生注意,从那时起参加的所有考试将根据新的大纲进行,并使用新的题目。为了帮助大家适应这次的更新,CDA 将提供一系列的备考资源,包括新考试大纲的详细介绍、新题目类型的模拟题,以及一些实用的学习资源。我们建议所有的考生尽早开始准备新的考试大纲,这将有助于考生在考试中取得更好的成绩。
感谢大家的理解和配合,希望这次的更新能帮助大家更好地提升自己的数据分析技能,并在自己的技术道路上更进一步。
祝各位考试顺利!
通知和新大纲详见:【点击查看】
为此,CDA北京授权中心准备了一系列直播对此次大纲升级做详细解读,大家可以点击下放预约卡片预约直播,关注视频号获取后续更多更新。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11