京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在未来,智能数据可以帮助我们了解一个智能系统每时每刻发生了什么,更能够告诉我们为什么会发生。甚至还可以告诉我们接下来会发生什么,以及我们应该如何应对。智能数据将改变企业的商业模式。
大部分专家都相信可以从巨量的数据中找到宝石和金子。英国牛津大学曾对全球各行业工作者做过一份调查问卷,2/3受访者认为,使用数据和分析软件可以使他们保持竞争优势。问题是,这些“金矿挖掘者”今天如何从如此巨大的数据山里挖到金子?
从3V到4V
等着要发掘的“金子”,指的是用于记录、存储和分析大量的数据,以及以合适的形式显示该结果的“大数据”新技术。现在最被人们广泛讨论的话题是用户购物、搜索或网购的数据,或利用全球金融和通信网络而产生的数据。还有银行、电信和保险业通过建立使用者信息与交易记录的分析模型,来增加利润和降低风险等等。大数据的时代,使我们能够探索人类的行为,探索人类本身的奥秘,这在以前在很大程度上是不可能的。我们经常使用的工具和终端,帮助我们获得和体验这方面的感受。
由于都想成为“掘金者”,从大数据挖掘价值,目前具有深入的分析、数学、统计、规划技能的数据分析师正炙手可热,已没有足够多的人才可满足需求。美国大型银行和联邦机构正在越来越多地聘请“首席数据官”(CDO)和数据分析师,以促进对于整个组织机构中的所有功能数据的收集、分析、分发和应用的战略思考。
大数据有所谓的3V特征:即“大量化”(Volume)、“多样化”(Variety)和“快速化”(Velocity)。然而,光是大量的数据采集是不够的,这些数据本身还需要有较高价值,即增加第四个V:Value(价值),成为4V。而经过“大数据”技术的处理(数据采集、数据分析、数据处理、数据显示等)之后更会产生较高的价值。
用智能数据建立智能系统
啤酒+尿布是值得挖掘的数据;而从工业设施、建筑物、能源系统和医院产生的比特和字节,含金量更高,更值得挖掘,因为它们可以用于建立起智能系统,这些比特和字节就是智能数据。我们来谈谈智能数据如何建立起一个智能系统。
终端通过连接、把它们管道化,对人们带来了极大的便利,大大提高了生产率。但是这些还不够,还需要体现“智能化”,实现智能系统。现在我们经常在提到智能手机、智能电表、智能电网、智能家居、智慧城市等等,都是希望人们使用的设备和终端能够根据人们的需要自动编程,实现自动化,尽量避免人工介入。
这样一种“智能化”,需要具备两个条件:首先是“管道化”(互联网思维的核心是“管道化思维”),就是把所有的终端或节点全部连接起来,互相之间能够有“沟通”(即发生交互作用);另一个是各个终端本身具备一个“小电脑”,即带有处理器芯片,可以通过软件处理和产生“智能数据”。有了这两个基本条件,就可以体现出一定程度的智能。
以抽水马桶为例。抽水马桶是已经管道化的马桶,再加上上述第二个条件,就可以变成一个“智能马桶”。具体可以这样来实施:在马桶里装有一片微处理器芯片和一片生化芯片(Lab-on-Chip,LOC),对人们的排泄物自动提取和分析,然后把分析结果通过管道,如WiFi送到医生那里,医生把每天的分析数据与事先存储的数据进行对比,给这位坐过这个马桶的人发出营养指标提醒和生理指标提醒,如果必要的话则写处方,提醒他服用药物或到医院进一步检查。另一方面,根据这个马桶的软件分析结果,会得出缺少哪种营养的具体数据,然后通过无线通信的管道传送到超市,超市会根据这些数据选出合适的食品通过快递服务送达家中。
抽水马桶还可以包含其他各种传感器进行“管道连接”,如每次使用自动记录用水量;如有漏水,自动通知维修人员或物业管理处派人来检修;如有堵塞,就会自动通知管道维修人员来疏通;如水漕不进水,也会自动通知相关人员来处理等等,这些都会产生一定的数据量。
我们必须了解这些智能数据的量,以便正确地评估它;我们必须知道各种器件和设施是如何工作的,了解我们需要哪些传感器和测量技术来获得真正重要的智能数据。决定性的因素不一定是数据量大,而是有价值的内容。
这样的智能数据可以体现在各个领域。如对于一个大型燃气轮机,有几百个传感器每秒钟在测量温度、压力、流量、气体组成。如果人们很了解设施的物理特性,因此知道如何正确地分析这些数据,就可以给发电厂非常有用的建议,来提高电力的使用效率并减少污染。同样的措施可以用于风力发电、建筑物、钢铁厂和整个城市。所有这些领域里,必须不仅收集数据,而且还理解数据。处理的数据是智能数据,得出的结论用于将企业或城市变得更智能。
适合于评估这些智能数据的算法还需要开发。这些算法可以帮助人们更好地节省能源、更好地有利于环境、更多地节省成本,以及使设备运行得更可靠。
在未来,智能数据可以帮助我们了解一个智能系统每时每刻发生了什么,更能够告诉我们为什么会发生。甚至还可以告诉我们接下来会发生什么,以及我们应该如何应对。智能数据将改变企业的商业模式。例如一家跨国公司可以设立一个全球维修中心,全球各个分部的工厂都设有大量传感器并与网络相连,只需要在这个中心分析大量的远程智能数据,就可以进行远程诊断和处理,而不需要技术人员到现场。这样的商业模式,对于火车、船舶、发电厂、医疗器械等等都是极其有用的。例如,从一辆火车的运行中得到的测量数据,可以帮助火车驾驶者运行的更平稳、更节能。节省下来的资金,则可以在用户和智能数据提供者两者分成。这是双赢的局面,也是如何从数据山中掘金的一个很好例子。
大数据如何成为“智能数据”
数据只是“大”,并没有太大意义,关键是如何最佳地挖掘高价值的数据、使用这些数据,使这些数据成为“智能数据”。这有几个方法:先评估数据的价值和将会产生的价值;把数据和“智能化”相关联;把数据变成具有上下文意义的灵活的数据结构;随着时间的推移,根据这些收集了的大量数据,展现一幅绚丽多彩的智能数据图。到最后,也不会再去思考大数据与智能数据有何区别,因为所有的数据都已经成为智能数据。
西方2000多年前就已发明的“管道化”的马桶开了物联网的先河。基于互联网的物联网(IoT)的到来,预示了新的创新设备、新的网络形态、新的商业模式的不断涌现,也预示着智能数据的成千上百倍增长,智能化将体现在各种应用中。如按照今天所理解的大数据概念,是不充分的,大数据必须从3V演变为4V,大数据必须演变成智能数据,整个家庭乃至整个城市也正在向“智能化”大步演进,才会有更多的“掘金”机会。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26