京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R进行统计分析--概率计算
R语言中提供了很多概率函数,可以方便的计算事件发生的概率。如二项分布概率函数和泊松分布概率函数。本篇文章介绍如果使用R语言中的这些函数求解事件发生的概率。
概率函数和前缀
R语言中每个概率分布都有对应的函数名称,例如二项分布是binmo,泊松分布是pois,正态分布是norm等等。每个函数都分别有四个不同的前缀,加上前缀可以生成随机数,求解概率和临界值等等。下面是四个前缀对应功能的说明。
r = random = 随机
d= density = 密度
p= probability = 概率
q =quantile = 分位
二项分布概率
假设网站的Landingpage页面中共有20个入口,那么我们预估每个入口被点击的概率为1/20,即P=0.05。(实际情况会复杂一些,每个入口在页面中的位置和展现的形式都 会不一样,一般首屏的入口比后面的入口会获得更多点击,图片和按钮形式的入口比文字类的入口更容易受到关注,导航和焦点图和Action按钮比其他类型的入口更容易 被点击。如有要获得最真实的点击概率,需要参考这个页面中每个入口的历史点击概率数据,这里我们只是假设一种理想情况来说明计算过程。)那么在10000次点击中, 关键按钮获得550次的概率是多少?
先来简单介绍下R语言中的二项分布函数和其中参数的含义,二项分布函数为binom,前缀d表示求密度,前缀p表示求累计概率。参数中X表示实验的成功次数,size表示实验次数,prob表示概率值。在这个例子中成功次数是550,实验次数是10000,概率为0.05。
#点击率0.05的情况下10000次点击中关键按钮恰好被点击550次的概率 > dbinom(x = 550,size = 10000,prob = 0.05)
[1] 0.001362855
经过计算10000次点击中关键按钮恰好被点击550次的概率为0.0013,这只是550次这个事件发生的概率值,并不包含549次点击和551次点击。但实际情况中恰好获得550并不是我们实际的目标。因此我们换一种计算方法再来看下。
#点击率0.05的情况下10000次点击中关键按钮被点击1-550次的概率
> sum(dbinom(x = 1:550,size = 10000,prob = 0.05))
[1] 0.9889429
在成功次数X中从之前的550变成了1:550,然后进行sum求和。获得从1点点击到550次点击的累计概率。从结果中可以看到概率高达0.98。这能说明10000次点击中关键按钮获得550次点击的概率非常高吗?我们能信心满满的说获得550次点击是个高概率事件吗?恐怕还不行。因为这是一个累计概率值,是从1次到550次的汇总。但我们的目标是获得550次或更多的点击,那么550次以下的点击量概率其实是我们不需要的。因此实际的概率值没有这么高。
> pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.9889429
计算积累概率值还有一个更简单的方法就是在二项分布概率函数的前面加前缀p,就可以自动获得550次点击的累计概率值了。结果与前面的方法一致。
#点击率0.05的情况下10000次点击中关键按钮获得500次到550次区间的点击的概率
> sum(dbinom(x = 500:550,size = 10000,prob = 0.05))
[1] 0.4953496
前面两种方法获得的概率值一个太低,一个太高。还有一种方法是只计算某个区间的概率值,这里我们将获得点击的次数限定在500次——550次之间,来求这一区间的概率值。从结果来看10000次点击中关键按钮获得500次——550次点击的概率为0.49。
#点击率0.05的情况下10000次点击中关键按钮分别获得500次到550次点击的概率
> dbinom(x = 500:550,size = 10000,prob = 0.05)
[1] 0.018301669 0.018265138 0.018190454 0.018078155 0.017929014 0.017744025 0.017524393 0.017271524 0.016987006 0.016672594 0.016330195
[12] 0.015961845 0.015569690 0.015155968 0.014722985 0.014273095 0.013808680 0.013332131 0.012845824 0.012352105 0.011853270 0.011351550
[23] 0.010849097 0.010347966 0.009850108 0.009357356 0.008871418 0.008393869 0.007926149 0.007469553 0.007025237 0.006594211 0.006177343
[34] 0.005775361 0.005388857 0.005018291 0.004663995 0.004326183 0.004004957 0.003700313 0.003412150 0.003140280 0.002884435 0.002644275
[45] 0.002419399 0.002209352 0.002013632 0.001831702 0.001662993 0.001506913 0.001362855
以上是点击量500次——到550次分解的概率值,0.49的概率值由以上的各个概率汇总而来。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> sum(dbinom(x = 551:10000,size = 10000,prob = 0.05))
[1] 0.01105708
再来看最开始的问题,10000次点击中关键按钮获得550次点击的概率。550次以下的点击不是我们希望的结果,因此我们再来看下点击量超过550次的概率有多少。从结果 来看获得点击量在551次——10000次的概率仅为0.011,因此获得超过550次以上的点击的概率比较低。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> 1-pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.01105708
由于从0到10000次点击的所有概率为1,因此用1减550次以下的概率值也能获得相同的结果。
泊松分布概率
假设在一次市场活动中,上一个小时中有40个用户注册,那么下一个小时有50个用户注册的概率是多少?
这里需要使用泊松分布概率函数,泊松分布函数是pois,第一个参数x是下一个时间段事件发生的次数,lambda是上一个时间段事件发生的次数。在这个例子中x=50, lambda=40。
#上一小时产生40个注册用户,下一小时产生恰好50个注册用户的概率
> dpois(x = 50,lambda = 40)
[1] 0.01770702
经过计算,下一个小时恰好有50个注册用户的概率为0.017。与二项分布中的问题一样,0.017是恰好50个用户的概率。不是49个用户也不是51个用户的概率。
#上一小时产生40个注册用户,下一小时产生1-50个注册用户的概率
> sum(dpois(x = 1:50,lambda = 40))
[1] 0.947372
把下一小时注册用户的数量改为1:50,并进行求和,获得了下一个小时获得1-50个注册用户的累计概率值。这个值有0.94。但我们的目标是50个注册用户,虽然概率很高 但低于50的事件发生并不是我们的目标。
> ppois(q = 50,lambda = 40)
[1] 0.947372
这是另一种计算方法,把泊松分布函数的前缀换为p,计算50个注册用户的累计概率值,结果与前面的方法一致。
#上一小时产生40个注册用户,下一小时产生40-50个注册用户区间的概率
> sum(dpois(x = 40:50,lambda = 40))
[1] 0.4684008
前一小时40个注册用户,后一个小时目标50个注册用户,我们来看下下一个小时注册用户是40-50这个区间的概率是多少。经过计算这个区间发生的概率为0.46。
#上一小时产生40个注册用户,下一小时分别产生40-50个注册用户的概率
> dpois(x = 40:50,lambda = 40)
[1] 0.06294704 0.06141175 0.05848738 0.05440686 0.04946078 0.04396514 0.03823056 0.03253664 0.02711387 0.02213377 0.01770702
这里显示了40-50个注册用户分别的发生概率,0.46的概率值由以上各个概率值汇总计算获得。
#上一小时产生40个注册用户,下一小时产生50个注册用户以上的概率
> 1-ppois(q = 50,lambda = 40)
[1] 0.05262805
最后再来看下下一个小时注册用户数量超过50的概率。用1减去50个用户的累计概率值就是超过50个注册用户发生的概率,计算结果是0.052,因此下一个小时获得超过50个注册用户的概率不高。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22