
大数据时代 数据该如何保护
随着数据发掘的不断深入和在各行业应用的不断推进,大数据安全的“脆弱性”逐渐凸显,国内外数据泄露事件频发,用户隐私受到极大挑战。而且在大数据环境下隐私泄露的危险,不仅仅在于泄露本身,还在于基于数据对下一步行动的预测和判断,因此大数据时代的隐私保护俨然成为大数据应用发展的一项重要课题。
目前隐私数据泄露的主要途径包括以下两个方面:非交互式泄露:主要指在信息系统内部的隐私泄露,多发生在业务流程中有多个节点可以对数据进行访问;交互式泄露:主要是针对信息使用传递过程中发生的泄露,可能发生在区域性平台数据交互等环节,虽然有基于角色访问控制的技术,但是在权限分级、设定、信息分级等方面有较大的难度。
面对隐私数据泄露的隐患,很多情况下,人们认为只要对数据进行匿名处理或者对重要字段进行保护,个人隐私就是安全的,但是大量的事实已经证明,可以通过收集其他周边信息对具体个人进行定位和辨识,下面就结合目前已有的技术手段对隐私保护进行分析。
1.信息加密与隐私保护
在很多信息管理软件中会应用哈希(Hash)和加密(Encrypt)进行数据保护,哈希是将目标对象转换成具有相同长度的、不可逆的杂凑字符串(或叫作信息摘要),而加密是将目标文本转换成具有相同长度的,可逆的密文。在被保护数据仅仅用作比较验证,以后不需要还原为明文形式时使用哈希,如果被保护数据在以后需要被还原为明文时,则使用加密。这两种方法均可以保证在数据库被非法访问的情况下,隐私或敏感数据不被非法访问者直接获取,比如数据库管理员的口令在经过哈希或加密后,使入侵者无法获得口令明文,也无法拥有对数据库数据的查看权限。
2.标识隐私匿名保护
标识匿名隐私保护,主要都是采取在保证数据有效性的前提下损失一些数据属性,来保证数据的安全性,通常采用概化和有损连接的方式,同传统泛化/隐匿方法相比,其在信息损失量和时间效率上具有明显的优势,在数据发布中删除部分身份标识信息,然后对准标识数据进行处理,当然任何基于隐私保护的数据发布方法都会有不同程度的损失,对于发布后的重构数据不可能,也不应该恢复到原始数据,所以未来在兼顾可用性与安全性的前提下,需要一种新的算法来找到可用与安全的折中点。
3.数据的分级保护制度
不同的信息在隐私保护中具有不同的权重,如果对所有信息都采用高级别的保护,会影响实际运作的效率,同时也是对资源的浪费,但如果只对核心信息进行保护也会通过关联产生隐私泄露的隐患,所以需要建立一套数据的分级制度,针对不同级别的信息采用不同的保护措施,但是在不同行业中,由于涉及不同系统和运作方式,制定一套完善的分级制度还涉及以下的访问权限控制问题。
4.基于访问控制的隐私保护
系统中往往参与的人员节点越多,导致潜在泄露的点也越多,访问控制技术可以对不同人员设置不同权限来限制其访问的内容,这其实也包括上面提到的数据分级问题,目前大部分的访问控制技术均是基于角色的访问控制,能很好地控制角色能够访问的内容及相应操作,但是规则的设置与权限的分级实现起来比较复杂,无法通过统一的规则设置来进行统一的授权,许多情况下需要对特定行业角色的特殊情况进行单独设置,不便于整体管理和调整。需要进一步对规则在各行业的标准体系进行深入研究。
通过对上面不同技术手段的分析可以看出,每项技术虽然各具特点,但在应用和性能上都有一定的局限,一定程度上也缺乏标准制度的保障。目前在大数据领域针对隐私保护问题尚未建立起一套完整的保护体系和标准,包括数据的存储环节、访问环节、应用环节在内尚未形成系统性的保护,未来在构建隐私保护体系时,在技术的基础上,需要进一步制定出相应切实可行的制度来规范人们的行为以及技术手段的顺利执行。所以隐私保护离不开法律政策的支撑,也惟有通过技术手段和法规制度相结合,才能实现大数据领域对“不能说的秘密”真正的保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15