
迎接法律行业的大数据时代(新知新觉)
以大数据、云计算、物联网等为代表的信息技术正深刻改变着我们认识世界、改造世界的方法。面对大数据,如果思想观念还停留在过去,就会落后于时代。在信息时代,我们应充分认识大数据对法律行业的意义,积极利用大数据带来的新思维、新方法推动法律行业发展。
提到法律领域的大数据,我们首先容易想到的是网上公开的由大量裁判文书构成的案例大数据。通过对裁判文书的分析,挖掘其中的数据段和规则,智能机器也能够读懂文书。如果机器能够理解我们的规则,它就能根据自身所理解的规则推导出新的规则,或者至少依据规则对新出现的事物作出判断。
目前的人工智能技术是海量大数据、自然语言分析能力、机器学习技术和强大的计算能力相结合的产物。包括案例大数据在内的法律大数据,可以从以下几个方面对法律行业产生积极作用。一是提升法律工作者的工作质量和效率。比如,快速寻找相似案件的法律文书。目前开展这项工作还需要人主动搜索案件,但数据技术系统可以通过对裁判文书关键词的精准匹配,判断裁判文书的相似程度,自动向用户推送类似的裁判文书。二是健全法律行业的评价体系。比如,从公开的裁判文书大数据中,可挖掘出律师的执业信息,为每一位律师“画像”。除此之外,法律行业的网络信息中已经沉淀了一部分律师执业状况的数据,将这些数据综合起来,就可以形成一个多维的律师评价体系。三是理顺法律职业共同体的关系。法律职业共同体的工作平台被互联网连接起来以后,它们之间的协作配合将更为高效;每一位法律工作者的工作进度都将得到更透明的展现,相关监督也将更为有效。
未来的法律职业共同体是一个线上线下融合的共同体。法律大数据是这个职业共同体的共同财富,也是它的坚实基础。但也应看到,要形成这样的法律大数据,当前还存在一些困难。第一,数据采集方式有待提高。传统的数据采集以统计为导向,多靠人工录入。这样的方式既增加了工作量,又由于主观性强而存在数据不够客观的问题。真正的大数据应来源于法律工作者在线行为的自然沉淀。事实上,移动互联网的发展让人们越来越多的行为在线上完成,而互联网技术的这一特点本身就会让数据沉淀下来。第二,数据的完整程度不够高,数据公开还不够全面。虽然近年来各级法院依托信息化和司法公开向社会公开了很多裁判文书,但它们实际上只是审判结果数据的在线化。审判过程等方面的数据开放程度还不够,法律大数据无法形成封闭环。第三,数据不开放、不贯通。法律行业的各类数据尚未贯通,还停留在一个个“数据孤岛”的状态,制约了人们对法律大数据的利用。为推动形成更加高效的法律职业共同体,应进一步推动法律大数据发展。
推进法律行业信息化。一定意义上说,法律人行为的在线程度决定了法律大数据的发展程度。因此,法律人养成在线工作习惯至关重要。当前,数据的生成、采集过程和法律工作过程结合还不够紧密,数据往往要通过人工再录入一遍。这样一来,法律人的工作量非但没有减轻,反而大大增加,这使得他们中一些人抵触大数据。只有让法律人真正感受到在线工作的便利,乐于在线工作,体会到数据采集和分析带来的实际好处,才能让他们对大数据从“要我用”转变为“我要用”。
增强法律数据开放度。打破数据壁垒,将数据视为国家基础性战略资源,加强对数据的开发共享。法律大数据是由法律职业共同体的在线行为共同沉淀的,是属于整个法律职业共同体的资源。任何一个法律职业都会涉及其他法律职业,需要共享彼此掌握的数据。只有打破各个法律职业间的数据壁垒,才能为所有法律人的在线工作提供更多数据支持,也才能进一步推动法律大数据沉淀。
充分利用法律大数据。虽然我们一直强调大数据的价值,但数据本身其实并不会产生价值。只有通过对数据进行计算,从数据中挖掘出规律,了解、分析甚至预测法律人的行为,法律大数据才能真正发挥积极作用。但是,计算能力毕竟是稀缺资源,仅由某家律师事务所、某个法律部门来进行计算,难以充分发挥法律大数据的价值。应允许更为多元的创新力量利用法律大数据,推动法律大数据的价值得到更大程度的发掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01