 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,DAX语言(Data Analysis Expressions)可以用来实现各种复杂的数据计算和分析,包括移动平均。本文将介绍如何使用DAX在Power BI中有效地计算移动平均。
移动平均是一种统计方法,用于平滑时间序列数据。它通过对连续时间段内的数据进行加权平均来消除噪声和季节性因素,并揭示出潜在的趋势和周期性变化。移动平均通常用于经济学、金融、天气预报等领域,以帮助预测未来趋势和趋势方向。
移动平均计算的核心是定义一个窗口期(Window),表示要计算平均值的数据点数量。例如,如果窗口期为3,那么移动平均将对连续的三个数据点进行平均。随着时间的推移,窗口期不断地向前移动,每次都计算平均值。
以下是一个简单的移动平均公式:
移动平均 = (数值1 + 数值2 + ... + 数值n) / n
其中,n是窗口期大小,数值1至数值n是要计算平均值的数据点。例如,在一个时间序列数据中,要计算过去三个月的移动平均,则n = 3,计算公式为:
移动平均 = (本月销售额 + 上月销售额 + 上上个月销售额) / 3
在Power BI中,可以使用DAX语言来计算移动平均。以下是一个简单的步骤:
步骤1:定义窗口期
首先,需要定义窗口期大小,也就是要计算平均值的数据点数量。可以使用DAX函数CALCULATE和LASTNONBLANK来获取最近n个非空值。例如,要计算最近三个月的移动平均,可以使用以下公式:
Window = CALCULATE(COUNTA(Table[Value]),FILTER(ALL(Table[Date]),Table[Date] > LASTNONBLANK(Table[Date], [Window]-1)-90))
其中,COUNTA函数计算非空值的数量,FILTER函数根据日期筛选数据,LASTNONBLANK函数获取最近一个非空值。
步骤2:计算移动平均
接下来,可以使用DAX函数AVERAGEX对窗口期的数据进行加权平均。例如,在一个名为“Sales”的表格中,有一个名为“Amount”的列,要计算最近三个月的销售额移动平均,可以使用以下公式:
Sales Moving Average = AVERAGEX(FILTER(Sales,Sales[Date] > LASTNONBLANK(Sales[Date], [Window]-1)-90), Sales[Amount])
其中,FILTER函数根据日期筛选数据,并将结果传递给AVERAGEX函数进行加权平均。LASTNONBLANK函数获取最近一个非空值。
在实现移动平均时,还需要考虑以下问题:
(1)窗口期大小的选择:窗口期的大小对移动平均的计算结果有很大影响。通常,窗口期越大,移动平均越平滑,但同时也可能会掩盖一些短期波动性和趋势。因此,在选择窗口期大小时,需要根据具体情况进行权衡和调整。
(2)
数据预处理:在实现移动平均之前,需要对数据进行预处理和清洗,例如去除异常值、缺失值和重复值。这样可以保证计算结果的准确性和可靠性。
(3)时间序列的基本特征:在进行移动平均计算时,还需要考虑时间序列的基本特征,例如季节性、趋势性和周期性等。对于不同类型的时间序列,可能需要采用不同的移动平均方法,例如加权移动平均、指数移动平均和中心移动平均等。
(4)数据可视化:最后,可以使用Power BI的可视化功能将移动平均结果可视化展示出来,以便更好地观察趋势和变化。例如,在一个折线图中同时显示原始数据和移动平均结果,可以更直观地看出趋势线和噪声的关系。
总之,移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,通过使用DAX语言,可以有效地实现移动平均计算,并结合数据预处理、时间序列特征和可视化等方面进行综合分析和展示。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23