
移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,DAX语言(Data Analysis Expressions)可以用来实现各种复杂的数据计算和分析,包括移动平均。本文将介绍如何使用DAX在Power BI中有效地计算移动平均。
移动平均是一种统计方法,用于平滑时间序列数据。它通过对连续时间段内的数据进行加权平均来消除噪声和季节性因素,并揭示出潜在的趋势和周期性变化。移动平均通常用于经济学、金融、天气预报等领域,以帮助预测未来趋势和趋势方向。
移动平均计算的核心是定义一个窗口期(Window),表示要计算平均值的数据点数量。例如,如果窗口期为3,那么移动平均将对连续的三个数据点进行平均。随着时间的推移,窗口期不断地向前移动,每次都计算平均值。
以下是一个简单的移动平均公式:
移动平均 = (数值1 + 数值2 + ... + 数值n) / n
其中,n是窗口期大小,数值1至数值n是要计算平均值的数据点。例如,在一个时间序列数据中,要计算过去三个月的移动平均,则n = 3,计算公式为:
移动平均 = (本月销售额 + 上月销售额 + 上上个月销售额) / 3
在Power BI中,可以使用DAX语言来计算移动平均。以下是一个简单的步骤:
步骤1:定义窗口期
首先,需要定义窗口期大小,也就是要计算平均值的数据点数量。可以使用DAX函数CALCULATE和LASTNONBLANK来获取最近n个非空值。例如,要计算最近三个月的移动平均,可以使用以下公式:
Window = CALCULATE(COUNTA(Table[Value]),FILTER(ALL(Table[Date]),Table[Date] > LASTNONBLANK(Table[Date], [Window]-1)-90))
其中,COUNTA函数计算非空值的数量,FILTER函数根据日期筛选数据,LASTNONBLANK函数获取最近一个非空值。
步骤2:计算移动平均
接下来,可以使用DAX函数AVERAGEX对窗口期的数据进行加权平均。例如,在一个名为“Sales”的表格中,有一个名为“Amount”的列,要计算最近三个月的销售额移动平均,可以使用以下公式:
Sales Moving Average = AVERAGEX(FILTER(Sales,Sales[Date] > LASTNONBLANK(Sales[Date], [Window]-1)-90), Sales[Amount])
其中,FILTER函数根据日期筛选数据,并将结果传递给AVERAGEX函数进行加权平均。LASTNONBLANK函数获取最近一个非空值。
在实现移动平均时,还需要考虑以下问题:
(1)窗口期大小的选择:窗口期的大小对移动平均的计算结果有很大影响。通常,窗口期越大,移动平均越平滑,但同时也可能会掩盖一些短期波动性和趋势。因此,在选择窗口期大小时,需要根据具体情况进行权衡和调整。
(2)
数据预处理:在实现移动平均之前,需要对数据进行预处理和清洗,例如去除异常值、缺失值和重复值。这样可以保证计算结果的准确性和可靠性。
(3)时间序列的基本特征:在进行移动平均计算时,还需要考虑时间序列的基本特征,例如季节性、趋势性和周期性等。对于不同类型的时间序列,可能需要采用不同的移动平均方法,例如加权移动平均、指数移动平均和中心移动平均等。
(4)数据可视化:最后,可以使用Power BI的可视化功能将移动平均结果可视化展示出来,以便更好地观察趋势和变化。例如,在一个折线图中同时显示原始数据和移动平均结果,可以更直观地看出趋势线和噪声的关系。
总之,移动平均是一种常见的数据分析技术,可以用来平滑时间序列数据并提取趋势。在Power BI中,通过使用DAX语言,可以有效地实现移动平均计算,并结合数据预处理、时间序列特征和可视化等方面进行综合分析和展示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05