
使用R进行数据匹配的方法
R中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能。与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式。 其中inner为默认的匹配模式。本篇文章我们将介绍merge函数的使用方法和4种拼接模式的区别。
merge函数的使用方法很简单,以下是官方的函数功能介绍和使用说明。merge函数中第一个出现的数据表是拼接后的left部分,第二个出现的数据表是拼接后的right部分。merge默认会按照两个数据表中共有的字段名称进行匹配和拼接。
merge
开始使用merge函数进行数据拼接之前先读取需要进行匹配的两个数据表,并命名为loan_status表和member_info表。
#读取并创建贷款状态数据表
loan_status=data.frame(read.csv('loan_status.csv',header = 1))
#读取并创建用户信息数据表
member_info=data.frame(read.csv('member_info.csv',header = 1))
下面我们分别查看了两个数据表中的内容。这个示例中的两个数据表较小,可以完整显示出来,如果数据量较大的话可以就不能这么直观的查看了。
#查看贷款状态数据表
loan_status
#查看用户信息数据表
member_info
对于较大的数据表,可以使用dim函数查看数据表的维度,下面我们分别查看了贷款状态表和用户信息表的维度。贷款状态表有27行7列,用户信息表有25行4列。
dim(loan_status);dim(member_info)
[1] 27 7
[1] 25 4
使用names函数查看两个数据表的列名称,下面分别显示了代码和列名称。可以发现,两个数据表中有一个共同的列member_id。
#查看两个数据表的列名称
names(loan_status);names(member_info)
[1] "member_id" "loan_amnt" "term""issue_d" "loan_status" "total_pymnt_inv" "total_rec_int"
[1] "member_id" "grade" "emp_length" "annual_inc"
inner匹配
inner模式是merge的默认匹配模式,我们通过下面的文氏图来说明inner的匹配方法。Inner模式提供在loan_status和member_info表中共有字段的匹配结果。也就是对两个的表交集部分进行匹配和拼接。单独只出现在一个表中的字段值不会参与匹配和拼接。从下面的匹配结果中也可以看出,共有22行,包含了loan_status和member_info的交集。
#inner模式匹配
merge(loan_status,member_info,by = 'member_id')
outer模式是两个表的汇总,将loan_status和member_info两个要匹配的两个表汇总在一起,生成一张汇总的唯一值数据表以及匹配结果。从结果中可以看出共包含30行数据,比两个表的行数都要多。并且在grade和其他字段包含Na值,这些是在两个表中匹配不到的内容。
#outer模式匹配
merge(loan_status,member_info,all=TRUE,sort=TRUE)
left模式是左匹配,以左边的数据表loan_status为基础匹配右边的数据表member_info中的内容。匹配不到的内容以NaN值显示。在Excel中就好像将Vlookup公式写在了左边的表中。下面的文氏图说明了left模式的匹配方法。Left模式匹配的结果显示了所有左边数据表的内容,以及和右边数据表共有的内容。
以下为使用left模式匹配并拼接后的结果,loan_status在merge函数中第一个出现,因此为左表,member_grade第二个出现,为右表。匹配模式为all.x=TRUE。从结果中可以看出left匹配模式保留了一张完整的loan_status表,以此为基础对member_info表中的内容进行匹配。loan_status表中有5个member_id值在member_info中无法找到,因此grade字段显示为NA值。
merge(loan_status,member_info,all.x=TRUE,sort=TRUE)
right与left模式正好相反,right模式是右匹配,以右边的数据表member_info为基础匹配左边的数据表loan_status。匹配不到的内容以NA值显示。下面通过文氏图说明right模式的匹配方法。Right模式匹配的结果显示了所有右边数据表的内容,以及和左边数据表共有的内容。
以下为使用right模式匹配拼接的结果,从结果表中可以看出right匹配模式保留了完整的member_info表,以此为基础对loan_status表进行匹配,在loan_status数据表中有3个条目在member_info数据表中无法找到,因此显示为了NA值。
merge(loan_status,member_info,all.y=TRUE,sort=TRUE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02