京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单的认识R语言和逻辑斯蒂回归
在生活中并不是所有的问题都要预测一个连续型的数值,比如药剂量,某人薪水,或者客户价值;逻辑斯蒂回归回归它主要用于只有两个结果的分类问题,它定义结果的变量只有两类的值,然后根据线性模型来预测归属类的概率;本文可能写的浅显,如果有错还望能指出来,因为只是写了普及问而已; logistic回归
假设有一个变量它一共只有两类值,现在我们需要估计出A属于这两个类别的概率,假设他的线性模型是这样的一个形式;
然而在上面的式子中Y值的分布不是固定的,因为我们都知道概率只能是0-1之间,所以我们必须要变换一下式子,让Y的值和概率一样必须是0~1的数值,一个有效的办法就是用一个连接函数也有人称之为联系函数,它大概的作用就是就是将Y变换后成为服从正态分布的变量;这样就可以对A进行估计了,这就是logtistic思想;
在logistic回归中,预测变量和概率之间的关系可以通过Logistic函数表示
然后通过一系列的logit变换后就成为下面的式子,感兴趣的可以查阅一下资料,这里就不写详细的步骤:
这里我们用R语言核心技术手册里面的一系列代码和数据来说明逻辑斯蒂回归;
首先是我们先载入相应的包和数据,这个数据是关于足球射门命中的数据,对于球员来说每次射门都是由一定的概率进球,这个概率与距离有关,离球门越近越可能进球;
library(nutshell)
data("field.goals")
这时候我们先用summary()这个函数观察一下数据的分布
粗劣解读一下数据,进球的距离最近是18码,最远是62码;
我们下列函数是创建进球与否的份二分类变量
field.goals.forlr <- transform(field.goals,good=as.factor(ifelse(play.type=="FG good","good","bad")))
这时候我们在用summary()这个函数观察一下射门数据的分布
大部分都是进球的,那么我们继续进行数据探究,让我们看看根据距离计算一下进球比例
field.goals.table <- table(field.goals.forlr$good,field.goals.forlr$yards)
field.goals.table
得到的结果如下
当然我们也可以画图出来看
plot(colnames(field.goals.table),field.goals.table["good",]/(field.goals.table["bad",]+field.goals.table["good",]))
请各位自动忽略我的没给XY命名,人比较懒
从上图的结果上看进球的百分比在随着距离发生变化
这时候我们使用glm函数建模对数据进行建模,因为在测试数据中是每一次的射门都是独立的,因此我们可以认为是贝努力实验,因此我们在GLM函数中使用family='binomial',因此我们需要执行R代码如下
并打印结果;
field.goals.mdl <- glm(good~yards,data=field.goals.forlr,family = "binomial")
summary(field.goals.mdl)
下面是一些结果的解读
NULL deviance 是指仅包括截距项、不包括解释变量的模型和饱和模型比较得到的偏差统计量的值
residual deviance 是指既包括截距项,又包括解释变量的模型和饱和模型比较得到的偏差统计量的值
如变量的值不止两类的情况,可以使用其他的函数multinom函数预测概率;今天我们就讲到这里;有兴趣的可以和我一起交流
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27