
简单的认识R语言和逻辑斯蒂回归
在生活中并不是所有的问题都要预测一个连续型的数值,比如药剂量,某人薪水,或者客户价值;逻辑斯蒂回归回归它主要用于只有两个结果的分类问题,它定义结果的变量只有两类的值,然后根据线性模型来预测归属类的概率;本文可能写的浅显,如果有错还望能指出来,因为只是写了普及问而已; logistic回归
假设有一个变量它一共只有两类值,现在我们需要估计出A属于这两个类别的概率,假设他的线性模型是这样的一个形式;
然而在上面的式子中Y值的分布不是固定的,因为我们都知道概率只能是0-1之间,所以我们必须要变换一下式子,让Y的值和概率一样必须是0~1的数值,一个有效的办法就是用一个连接函数也有人称之为联系函数,它大概的作用就是就是将Y变换后成为服从正态分布的变量;这样就可以对A进行估计了,这就是logtistic思想;
在logistic回归中,预测变量和概率之间的关系可以通过Logistic函数表示
然后通过一系列的logit变换后就成为下面的式子,感兴趣的可以查阅一下资料,这里就不写详细的步骤:
这里我们用R语言核心技术手册里面的一系列代码和数据来说明逻辑斯蒂回归;
首先是我们先载入相应的包和数据,这个数据是关于足球射门命中的数据,对于球员来说每次射门都是由一定的概率进球,这个概率与距离有关,离球门越近越可能进球;
library(nutshell)
data("field.goals")
这时候我们先用summary()这个函数观察一下数据的分布
粗劣解读一下数据,进球的距离最近是18码,最远是62码;
我们下列函数是创建进球与否的份二分类变量
field.goals.forlr <- transform(field.goals,good=as.factor(ifelse(play.type=="FG good","good","bad")))
这时候我们在用summary()这个函数观察一下射门数据的分布
大部分都是进球的,那么我们继续进行数据探究,让我们看看根据距离计算一下进球比例
field.goals.table <- table(field.goals.forlr$good,field.goals.forlr$yards)
field.goals.table
得到的结果如下
当然我们也可以画图出来看
plot(colnames(field.goals.table),field.goals.table["good",]/(field.goals.table["bad",]+field.goals.table["good",]))
请各位自动忽略我的没给XY命名,人比较懒
从上图的结果上看进球的百分比在随着距离发生变化
这时候我们使用glm函数建模对数据进行建模,因为在测试数据中是每一次的射门都是独立的,因此我们可以认为是贝努力实验,因此我们在GLM函数中使用family='binomial',因此我们需要执行R代码如下
并打印结果;
field.goals.mdl <- glm(good~yards,data=field.goals.forlr,family = "binomial")
summary(field.goals.mdl)
下面是一些结果的解读
NULL deviance 是指仅包括截距项、不包括解释变量的模型和饱和模型比较得到的偏差统计量的值
residual deviance 是指既包括截距项,又包括解释变量的模型和饱和模型比较得到的偏差统计量的值
如变量的值不止两类的情况,可以使用其他的函数multinom函数预测概率;今天我们就讲到这里;有兴趣的可以和我一起交流
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15