京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何做一名“称职”的数据专家
众所周知,在数据挖掘课题中,很大比重的工作量集中在数据信息收集、整合和探索阶段,挖掘模型的稳定性和提升度很大程度上依赖于大宽表的数据质量。
我们数据专家的作用就是要确保大宽表的数据完备性和数据准确性。
那么,什么样的人才能称为数据专家?
我的理解是:
1、熟悉行内常用业务系统的功能;
2、了解行内指标体系的业务定义和业务口径;
3、熟悉行内数据平台的架构及数据分层方式;
4、能从数据角度加以分析解释任何业务问题;
5、技术能力不可或缺。
下面,我从挖掘课题的前期数据准备阶段入手,介绍一下如何更好发挥一个数据专业人士的作用。
第一,理解需求,达成共识
在项目组接收业务需求、明确业务目标后,挖掘领域专家、业务领域专家、数据领域专家会一同讨论研究以下相关问题:
1、所有干系人讨论并熟悉挖掘主题相关的业务流程和业务知识;
2、为了实现业务需求,可能应用的算法理论和模型设计、开发;
3、基于对模型算法和业务目标的理解,确定应该准备的数据集合。
第二,数据信息收集
数据专家根据达成的共识,去分析可能获取目标数据的业务系统,对照数仓映射文档,查询和确认目标数据是否已经入仓、在仓库的存储位置、是否需要获取第三方数据等数据来源问题。
数据专家在收集到这些信息后,结合对业务目标的理解,再次组织相关干系人沟通和确认数据情况,讨论数据是否完备,对部分缺失数据提出可选的解决方案。
第三,数据整合
在确定数据信息后,数据专家开始着手对数据进行合并整合。
前几年,我曾接触到一个挖掘课题,数据专家在准备好大宽表后,并没有对数据质量进行充分的校验就交给了挖掘专家,后续的结果可想而知:模型结果的稳定性和提升度无法让客户满意,导致项目合作并不愉快。
因此,我在进行数据整合的过程中,始终带着辩证的思想去验证数据质量,在确保基础表数据准确的情况下,每拼接一张表,我都会从以下角度来检查:
1、数据记录条数。比如在做内关联时,如两个表的主键不匹配,则很可能导致关联结果表的数据记录有误;
2、关键指标合计值。对合并后的宽表与源表进行指标合计值比较,个人认为这是检查多表合并后数据质量最好的办法之一;
3、指标间勾稽关系。对于原表有勾稽关系的指标,抽样检查是否继续满足勾稽关系;
4、关键维度取值校验。在维度取值代码重定义后,需全样本分析检查是否与设想一致,包括代码取值、频数分布等。
第四,数据探索
此处数据探索的目的是为了再次确保移交给挖掘专家的大宽表的数据完备性。
在多次与相关干系人讨论后,各领域专家依据长期的经验积累,判定出某些变量可能会起到决定性作用,由于系统历史原因,此时数据专家需要去验证这些变量取值缺失是否严重、分布是否合理,在提出可替代的解决方案并获得认可后重新进行数据整合。
总的来说,万丈高楼平地起,作为一个被认可的数据专家,我们需要做好挖掘项目的基石,让挖掘专家对从我们这接收的大宽表不要有任何数据顾虑,集中精力做大楼的修葺美化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22