京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
就在前段时间,一项由卫健委发起的脱发人群调查数据显示:中国受脱发问题困扰的人群高达2.5亿。听到这儿,远在韩国的各家媒体又开始出来搞事情了,
根据他们的计算,这些人完全脱发时的总脱发面积大约可达5900平方公里,相当于首尔市面积(605平方公里)的十倍,那么今天小编就以一个数据分析师的身份来为这些人群出出主意,挑几款相对合适的防脱发洗发水给他们来使用
1. 聊聊脱发困扰
脱发其实分为很多种情况,如脂溢性脱发,表现为头屑增多、头皮痛痒、头发油脂分泌旺盛。还有营养性脱发,当饮食作息不规律时,脱发情况就会愈发地严重,以及物理性脱发,有时头发扎太紧、扯伤毛囊,都会造成脱发。
不过大家也不用太过于担心,有研究表明,一个正常人每天脱落80-100根头发属于正常情况,但是如果超过100根就要提高警惕了,极大可能是头发的生长跟不上脱发的速度了。而有一款合适的洗发水,保持头皮的清洁卫生,对于防脱生发也有着极大的帮助,而对于不同头皮发质、不同年龄段的人来说,使用的洗发水也是不尽相同的。
2. 数据采集
数据采集是数据可视化分析的第一步,也是最基础的一步,本文主要是基于从电商平台上抓取一些防脱发类型的洗发水,采集过程如下
2.1 页面分析与程序的编写
该页面的总共60件商品由两个子页面构成的,每一个子页面分别包含30件商品,通过page参数来进行调节,那么我们请求的构造方式就变得相当简单了,
def get_xxx_html(page): params = (
('keyword', 'u9632u8131u53D1u6D17u53D1u6C34'),
('qrst', '1'),
('suggest', '1.def.0.base'),
('wq', 'u9632u8131u53D1u6D17u53D1u6C34'),
('stock', '1'),
('pvid', '4d8b661510984fb5ae2bf68fac6c50c7'),
('page', str(page)),
('s', '27'),
('scrolling', 'y'),
('log_id', '1633307411833.8939'),
('tpl', '1_M'),
('isList', '0'),
)
response = requests.get('https://search.xxxx.com/s_new.php', headers=headers, params=params, proxies=proxies)
response_beau = BeautifulSoup(response.text, 'lxml') return response_beau
通过这个请求,可以获取到的商品信息如下
而针对评论方面的内容,则是以json数据形式存在,比较好解析,而且接口api非常明确,可以直接通过商品id这个参数即可进行请求的获取
params = (
('callback', 'fetchJSON_comment98'),
('productId', str(productId)),
('score', '0'),
('sortType', '5'),
('page', '0'),
('pageSize', '10'),
('isShadowSku', '0'),
('fold', '1'),
)
response = requests.get('https://club.xxxxx.com/comment/productPageComments.action', headers=headers, params=params, cookies=cookies)
response_jsonified = response.text.replace("fetchJSON_comment98", "")[1:-2]
response_jsonified_again = json.loads(response_jsonified)
productCommentSummary = response_jsonified_again.get("productCommentSummary")
commentSum = productCommentSummary.get("commentCountStr")
goodRate = productCommentSummary.get("goodRate")
3.数据清洗
数据采集后,接下来便对其进行数据清洗,去除重复值与脏数据,有助于提高可视化分析的准确性。
导入商品数据
import pandas as pd df = pd.read_excel("jd_product_info.xlsx") df.info()
删除重复数据
df.drop_duplicates()
特殊字符处理
df["product_name"] = df["product_name"].str.replace(r's','',regex=True)
df["commentSum"] = df["commentSum"].str.replace('+','',regex=True).str.replace('万','0000',regex=True)
df.describe()
4. 可视化分析
以下我们将从商品的价格分布、评论分布、商品产地分布、旗舰店所卖商品分布,商品功效等维度来进行数据的可视化分析
商品价格分布
df["product_price"].plot.hist(stacked = True, bins=20)
可以看到大部分的商品价格都在250元以内,然后我们对商品的价格区间做一个统计分析
df["product_price_range"] = df["product_price"].apply(lambda x: range_price(x)) df["product_price_range"].value_counts()
评论数分布
大部分的商品评论数都是在5000+或者是2000+左右,或者是在200以及500左右的评论量,而评论数在50万以上以及100万以上的分别有22个和17个,我们可以基本认定这些类的商品,它的购买量是最多的,我们
df["commentSum"].value_counts().head(8)
而评论量在100万以上的基本上都是霸王旗舰店或者是爱茉莉官方旗舰店所售卖的商品
df[df["commentSum"] == "1000000"]["product_shop_name"].value_counts()
哪些旗舰店的商品最多
那么从总体上来看,哪家店铺卖的防脱发的洗发水更多呢,其中“霸王旗舰店”总体上来看也是售卖防脱发类型的产品最多的,其次便是“华贸美妆专营店”和“滋源官方旗舰店”等
df["product_shop_name"].value_counts().head(20)
不同头皮与不同发质对应的洗发水
不同头皮、不同发质所对应使用的洗发水不同,例如对于油性头皮,想要“去屑、控油、防脱”功效的洗发水,可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:油性"]
df_1["commentSum"] = df_1["commentSum"].astype("int")
df_1[df_1["product_function"].str.contains("去屑")].sort_values("commentSum", ascending = False)
例如对于中性头皮,想要达到控油效果的洗发水,则可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:中性"]
df_1["commentSum"] = df_1["commentSum"].astype("int")
df_1[df_1["product_function"].str.contains("控油")].sort_values("commentSum", ascending = False)
小结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15