京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个粉丝【Lethe】问了一道Pyecharts可视化的问题,如下图所示。
后来原始数据和代码都给到了,需要帮忙看看。
下面是她自己的代码,如下所示:
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('D:python-basepython实训项目文档国内疫情统计表1.xlsx')
locations = [location for location in df['省']]
values = [value for value in df['当前确诊']]
datas1 = list(zip(locations, values))
data2 = df['省']
data2_list = list(data2) # print(data2_list) data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7)
a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
)
b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
后来【此类生物】修改了下代码,顺利解决了问题,代码如下所示。
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('国内疫情统计表1.xlsx')
locations = [] for location in df['省']: if "广西" in location:
location = "广西" if "新疆" in location:
location = "新疆" if "宁夏" in location:
location = "宁夏" if "西藏" in location:
location = "西藏" if "内蒙古" in location:
location = "内蒙古" else:
location = location.strip("省市")
locations.append(location)
values = [value for value in df['当前确诊']]
print(values, locations)
datas1 = list(zip(locations, values)) # data2 = locations
data2_list = list(data2)
print(data2_list)
data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7) # # # a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
) # # # b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
顺利解决问题。
其实就是数据处理的问题,关于这个之前有写过文章,惊!Pyecharts作图,发现无数据展示?,感兴趣的可以看下,看完之后就一目了然了。
如果有遇到问题,随时联系我解决,欢迎加入我的Python学习交流群。
大家好,我是Python进阶者。这篇文章主要盘点了一道Pyecharts作图的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16