
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个粉丝【Lethe】问了一道Pyecharts可视化的问题,如下图所示。
后来原始数据和代码都给到了,需要帮忙看看。
下面是她自己的代码,如下所示:
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('D:python-basepython实训项目文档国内疫情统计表1.xlsx')
locations = [location for location in df['省']]
values = [value for value in df['当前确诊']]
datas1 = list(zip(locations, values))
data2 = df['省']
data2_list = list(data2) # print(data2_list) data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7)
a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
)
b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
后来【此类生物】修改了下代码,顺利解决了问题,代码如下所示。
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('国内疫情统计表1.xlsx')
locations = [] for location in df['省']: if "广西" in location:
location = "广西" if "新疆" in location:
location = "新疆" if "宁夏" in location:
location = "宁夏" if "西藏" in location:
location = "西藏" if "内蒙古" in location:
location = "内蒙古" else:
location = location.strip("省市")
locations.append(location)
values = [value for value in df['当前确诊']]
print(values, locations)
datas1 = list(zip(locations, values)) # data2 = locations
data2_list = list(data2)
print(data2_list)
data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7) # # # a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
) # # # b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
顺利解决问题。
其实就是数据处理的问题,关于这个之前有写过文章,惊!Pyecharts作图,发现无数据展示?,感兴趣的可以看下,看完之后就一目了然了。
如果有遇到问题,随时联系我解决,欢迎加入我的Python学习交流群。
大家好,我是Python进阶者。这篇文章主要盘点了一道Pyecharts作图的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18