
作者:俊欣
来源:关于数据分析与可视化
在上一篇教程当中,我们讲了Python在图片处理当中的应用,通过调用当中的opencv的模块,那么今天小编就和大家来分享一下Python同样也可以用来制作视频,也就是调用moviepy的模块。
Moviepy是一个用于视频剪辑的Python模块,可被用来进行一些基本的视频剪辑操作,例如视频的拼接、音频视频的合成、添加一些基本的转场等操作,它可以对大多数格式的视频文件进行读取,包括MP4以及GIF。
那么我们首先通过pip命令来安装该模块,
pip install moviepy
不同版本的moviepy版本在使用上也存在着出入,这里小编使用的是1.0.1版本
在安装好了该模块之后,接下来我们来简单地制作一张视频,步骤也是非常的简单,我们读取若干张照片,将这些照片合成一条视频,并且添加上简单的转场效果。代码如下
import os from moviepy.editor import * from moviepy.video.compositing.transitions import crossfadein
filelist = os.listdir("../images/")
clips_list = [] for item in filelist: if item.endswith('.png') or item.endswith('.jpg'): # 判断图片后缀是否是.png photo_path = "./images/{}".format(item)
clips1 = ImageClip(photo_path).set_duration(0.5).fx(crossfadein, 1)
clips_list.append(clips1)
video_clip = concatenate_videoclips(clips_list, method="compose")
video_clip.write_videofile("test.mp4", fps=24, remove_temp=True)
output
那既然涉及到了转场效果的添加,这里引用的是moviepy.video.compositing.transitions当中的渐入渐出的转场效果(crossfadein/crossfadeout),从整体的代码逻辑上来看,我们在读取了图片之后,分别在后面添加上转场效果,转场的时长为0.5秒,最后我们将这些带有转场效果的图片合成一条视频并且保存到指定的路径。
经过上面的实践之后,我们合成出来的视频是没有背景音乐的,moviepy模块还能够为视频添加BGM,代码如下
videoclip = VideoFileClip("video.mp4")
audioclip = AudioFileClip("audio.mp3")
finalclip = videoclip.set_audio(audioclip)
finalclip.write_videofile("final_result.mp4", fps=60, remove_temp=True, codec="libx264")
output
小编所使用的的版本的moviepy,需要去修改源代码当中的部分代码才可以成功地在视频当中添加音频,具体的位置是在site-packagesmoviepyvideoioffmpeg_writer.py当中的第86行的-an参数去除掉
我们也可以在现有视频的基础上进二创,例如对视频进行缩放、翻转等等。例如对视频进行垂直或者是水平方向上的翻转,代码如下
clip1 = VideoFileClip("video.mp4") clip2 = clip1.fx(vfx.mirror_x) clip3 = clip1.fx(vfx.mirror_y)
当然我们也可以对视频进行缩放,例如缩放60%,代码如下
clip4 = clip1.resize(0.60)
所有的代码如下所示
from moviepy.editor import VideoFileClip, clips_array, vfx
clip1 = VideoFileClip("out.mp4").margin(10) # 添加空隙 clip2 = clip1.fx(vfx.mirror_x)
clip3 = clip1.fx(vfx.mirror_y)
clip4 = clip1.resize(0.60) # 缩小60% final_clip = clips_array([[clip1, clip2],
[clip3, clip4]])
final_clip.resize(width=480).write_videofile("my_stack.mp4")
output
倘若我们想从视频当中截图一部分出来,调用的是subclip()方法,代码如下
clip = VideoFileClip("video.mp4")
clip_2 = clip.subclip(5, 10) # 截取5-10秒的部分出来 clip_2.write_videofile("video_2.mp4")
最后moviepy模块也可以和matplotlib可视化模块相结合来制作动图,通过自定义一个函数来生成一帧一帧的图画,最后生成一个gif动图,代码如下
x = np.linspace(-5, 5, 200) duration = 5 fig, ax = plt.subplots() def build_frame(t): ax.clear() ax.plot(x, np.sin(x**2) + np.sinc(x + 2*np.pi/duration * t), lw=5) ax.set_ylim(-2.5, 2.5) return mplfig_to_npimage(fig) animation = VideoClip(build_frame, duration=duration) animation.write_gif('movie_matplotlib.gif', fps=60)
output
CDA数据分析师分享内容,欢迎转发
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15