京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:CDA资深讲师 张藉予
编辑:Mika
随着数据分析的不断应用与发展,用户画像已经广为人知。其中的核心原理就是对用户进行分群,而用户分群的主要逻辑就是将数据进行标签化。
RFM模型是我们常用来分析客户价值的数据分析模型,使用这个模型分析后配合匹配的营销方法,能够让业绩进行大幅度提升。
RFM模型具有分析结构简单,易用、数据容易获取等特性,通过这个模型可以衡量客户价值和创造利润能力。
通过3个简单的指标,可以将客户按照价值分成8个类别,从而使用不同的销售策略提升业绩。
下面给大家介绍一个关于RFM模型的标签化应用案例。
首先拿到数据集,导入数据集。
然后我们会进行数据读取,看一下数据的基本信息数据是否有无缺失。
第二步我们将数据集进行特征筛选。
首先我们发现导入的原始数据的时间格式有一些问题,因此将时间进行了处理。
通过一些掉包的方式将时间格式处理成了我们想要的时间格式,然后我们将数据集进行RFM的计算。
首先,计算R。
因为R是取消费的时间间隔,所以我们取出了每个客户ID下的最近的一次消费时间,然后定义了一个最大的消费时间,然后与其做相减得出来了每个客户的最近一次的消费时间间隔。
第二个是计算F。
F是计算客户对于打折商品的偏好程度。
所以我们将数据进行了处理之后,计算出来了特价商品占特价商品跟普通商品的比例,这样得出来了用户对于打折商品的用户的偏好程度。
第三个是计算M。
M是用户的消费金额,我们将数据进行加加减减,最后得出来了用户关于特价商品跟普通商品的消费金额。
然后我们将所计算的RFM进行了特征的整合,得出来了每个客户ID下的RFM具体的数值。
然后下一步将RFM进行分段打分。
这里给出两个方法。
一是函数映射。
我们将数据当中的RFM进行了等级分箱的处理,然后定义了分段函数,将每个RFM的值对分段函数进行比较,得出来了一个01RFM的数据集。
第二个方法是利用Python自带的算法库。
我们将阈值取出,然后将阈值进行01编码,最后也是同样能够得到RFM的01数据。
然后我们将RFM模型定性的输出,将01进行标签化的处理,从而给用户打上各种各样的标签:兴趣是否高,价值是否活跃……
我们可以通过这些标签给到业务端人员进行更好的营销活动。
好的,以上就是今天的分享。如果大家还有数据分析方面相关的疑问,就在评论区留言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27