京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:小伍哥聊风控
大家好,我是小伍哥,今天跟大家聊个比较深入点的话题,技术好就能做好风控么?
风控算法或风控策略,确实需要很深、很广泛的技术储备,但是也需要很高的应用艺术和想象力。风控不像其他业务技术或算法,算法的出现本身就有了比较确定性的场景了,比如推荐,直接套用就行,但是很多算法在风控领域应用的时候,场景需要自己去挖掘和发现。
怎么抽象场景,怎么使用算法,就是一个艺术活了。下面用一个图异常检测算法的一个点举例说明。算法链接:OddBall-图异常点检测
这篇文章,我相信很多读者看到是图算法,基本就放弃,认为需要要自己写很复杂的算法才能部署和实现,其实对这个算法充分理解后,简单的统计就能用了,难点在于对算法的理解,以及对业务中场景的抽象,我们看看这个算法的一个点。
算法如下:DominantPair(主导边)这个类型的风险,Dominant heavy links指“主导的边”,Ego-Net中存在某条边权重异常大,如下图所示。
度量方法:主特征值~总权重,大多数节点Ego-net对应带权邻接矩阵中主特征值(principal eigenvalue,即最大特征值)~总边权重也服从幂律分布,其中系数 λ 表示Ego-net中边权均匀分布, λ 接近1表示存在DominantPair的情况,衡量的公式如下:
我们来简化下这个算法思想:其实一句话,就是一个点有很多个邻居,某个邻居权重占所有邻居总权重的比例特别大
再来个更具体的例子:一个商家一个月卖了10000个订单,100个消费者,其中一个消费者买了9900单,那这个消费者占比9000/10000=90%,形成了主导边,那这个商家可能就存在异常。我们其实只要统计商家的总订单,以及每个商家-消费者维度的订单聚合,然后相除就解决了,这就是个简单的SQL计算问题,完全不用什么复杂的写算法。
当然,这里的订单数可以换成金额
订单换成点击:可以监控恶意流量什么的
订单换成领券:可以监控羊毛党什么的
·········
商家和消费者也可以换成其他的角色,根据自己的平台设计这种监控指标,我觉得能发现传统发现不了的异常,因为很少有人这么思考过。
那消费者-换地址关系呢?情况就变了,权重大反而是正常的,小反而不正常,可能是黄牛什么的,因为正常人得地址,相对比较集中,就那个几个固定的。
那消费者-充值手机呢?也是同样的,权重大反而是正常的,小反而不正常,可能是销赃款或者洗钱什么的。因为正常人,给自己手机充值,或者加几个家里人和同学什么的,有些账户给几千几万人充值,那可能就异常了。
那这个是不是可以再抽象一点,比如消费者-购物类目关系网络,按道理,每个人的购物,基本均匀分布在不同的类目,有吃穿的也有用的,如果发现一个用户,大量购买集中在某些偏门的类目,那是不是有可能这个用户或者被购买的商家有异常?是不是要买制毒的原材料?是不是在图谋什么?或者在交易什么?
每个公司的业务不一样,但是很多思路,都是可以顺着这个算法的结构去思考的,需要充分理解算法,充分理解业务,充分的想象力。
我们看到了异常检测,看到了图,但是要更加深入的去看到业务与之匹配的地方,多维度的思考,联想,并进行应用,才能让算法产生价值,所以,风控,不仅是技术问题,也是艺术。
风控挖掘的乐趣,大抵也在此了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27