京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:小伍哥聊风控
大家好,我是小伍哥,今天跟大家聊个比较深入点的话题,技术好就能做好风控么?
风控算法或风控策略,确实需要很深、很广泛的技术储备,但是也需要很高的应用艺术和想象力。风控不像其他业务技术或算法,算法的出现本身就有了比较确定性的场景了,比如推荐,直接套用就行,但是很多算法在风控领域应用的时候,场景需要自己去挖掘和发现。
怎么抽象场景,怎么使用算法,就是一个艺术活了。下面用一个图异常检测算法的一个点举例说明。算法链接:OddBall-图异常点检测
这篇文章,我相信很多读者看到是图算法,基本就放弃,认为需要要自己写很复杂的算法才能部署和实现,其实对这个算法充分理解后,简单的统计就能用了,难点在于对算法的理解,以及对业务中场景的抽象,我们看看这个算法的一个点。
算法如下:DominantPair(主导边)这个类型的风险,Dominant heavy links指“主导的边”,Ego-Net中存在某条边权重异常大,如下图所示。
度量方法:主特征值~总权重,大多数节点Ego-net对应带权邻接矩阵中主特征值(principal eigenvalue,即最大特征值)~总边权重也服从幂律分布,其中系数 λ 表示Ego-net中边权均匀分布, λ 接近1表示存在DominantPair的情况,衡量的公式如下:
我们来简化下这个算法思想:其实一句话,就是一个点有很多个邻居,某个邻居权重占所有邻居总权重的比例特别大
再来个更具体的例子:一个商家一个月卖了10000个订单,100个消费者,其中一个消费者买了9900单,那这个消费者占比9000/10000=90%,形成了主导边,那这个商家可能就存在异常。我们其实只要统计商家的总订单,以及每个商家-消费者维度的订单聚合,然后相除就解决了,这就是个简单的SQL计算问题,完全不用什么复杂的写算法。
当然,这里的订单数可以换成金额
订单换成点击:可以监控恶意流量什么的
订单换成领券:可以监控羊毛党什么的
·········
商家和消费者也可以换成其他的角色,根据自己的平台设计这种监控指标,我觉得能发现传统发现不了的异常,因为很少有人这么思考过。
那消费者-换地址关系呢?情况就变了,权重大反而是正常的,小反而不正常,可能是黄牛什么的,因为正常人得地址,相对比较集中,就那个几个固定的。
那消费者-充值手机呢?也是同样的,权重大反而是正常的,小反而不正常,可能是销赃款或者洗钱什么的。因为正常人,给自己手机充值,或者加几个家里人和同学什么的,有些账户给几千几万人充值,那可能就异常了。
那这个是不是可以再抽象一点,比如消费者-购物类目关系网络,按道理,每个人的购物,基本均匀分布在不同的类目,有吃穿的也有用的,如果发现一个用户,大量购买集中在某些偏门的类目,那是不是有可能这个用户或者被购买的商家有异常?是不是要买制毒的原材料?是不是在图谋什么?或者在交易什么?
每个公司的业务不一样,但是很多思路,都是可以顺着这个算法的结构去思考的,需要充分理解算法,充分理解业务,充分的想象力。
我们看到了异常检测,看到了图,但是要更加深入的去看到业务与之匹配的地方,多维度的思考,联想,并进行应用,才能让算法产生价值,所以,风控,不仅是技术问题,也是艺术。
风控挖掘的乐趣,大抵也在此了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21